Web Crypto API#
Node.js provides an implementation of the standard Web Crypto API.
Use require('node:crypto').webcrypto
to access this module.
const { subtle } = require('node:crypto').webcrypto;
(async function() {
const key = await subtle.generateKey({
name: 'HMAC',
hash: 'SHA-256',
length: 256
}, true, ['sign', 'verify']);
const enc = new TextEncoder();
const message = enc.encode('I love cupcakes');
const digest = await subtle.sign({
name: 'HMAC'
}, key, message);
})();
Examples#
Generating keys#
The <SubtleCrypto> class can be used to generate symmetric (secret) keys
or asymmetric key pairs (public key and private key).
AES keys#
const { subtle } = require('node:crypto').webcrypto;
async function generateAesKey(length = 256) {
const key = await subtle.generateKey({
name: 'AES-CBC',
length
}, true, ['encrypt', 'decrypt']);
return key;
}
ECDSA key pairs#
const { subtle } = require('node:crypto').webcrypto;
async function generateEcKey(namedCurve = 'P-521') {
const {
publicKey,
privateKey
} = await subtle.generateKey({
name: 'ECDSA',
namedCurve,
}, true, ['sign', 'verify']);
return { publicKey, privateKey };
}
Ed25519/Ed448/X25519/X448 key pairs#
const { subtle } = require('node:crypto').webcrypto;
async function generateEd25519Key() {
return subtle.generateKey({
name: 'Ed25519',
}, true, ['sign', 'verify']);
}
async function generateX25519Key() {
return subtle.generateKey({
name: 'X25519',
}, true, ['deriveKey']);
}
HMAC keys#
const { subtle } = require('node:crypto').webcrypto;
async function generateHmacKey(hash = 'SHA-256') {
const key = await subtle.generateKey({
name: 'HMAC',
hash
}, true, ['sign', 'verify']);
return key;
}
RSA key pairs#
const { subtle } = require('node:crypto').webcrypto;
const publicExponent = new Uint8Array([1, 0, 1]);
async function generateRsaKey(modulusLength = 2048, hash = 'SHA-256') {
const {
publicKey,
privateKey
} = await subtle.generateKey({
name: 'RSASSA-PKCS1-v1_5',
modulusLength,
publicExponent,
hash,
}, true, ['sign', 'verify']);
return { publicKey, privateKey };
}
Encryption and decryption#
const crypto = require('node:crypto').webcrypto;
async function aesEncrypt(plaintext) {
const ec = new TextEncoder();
const key = await generateAesKey();
const iv = crypto.getRandomValues(new Uint8Array(16));
const ciphertext = await crypto.subtle.encrypt({
name: 'AES-CBC',
iv,
}, key, ec.encode(plaintext));
return {
key,
iv,
ciphertext
};
}
async function aesDecrypt(ciphertext, key, iv) {
const dec = new TextDecoder();
const plaintext = await crypto.subtle.decrypt({
name: 'AES-CBC',
iv,
}, key, ciphertext);
return dec.decode(plaintext);
}
Exporting and importing keys#
const { subtle } = require('node:crypto').webcrypto;
async function generateAndExportHmacKey(format = 'jwk', hash = 'SHA-512') {
const key = await subtle.generateKey({
name: 'HMAC',
hash
}, true, ['sign', 'verify']);
return subtle.exportKey(format, key);
}
async function importHmacKey(keyData, format = 'jwk', hash = 'SHA-512') {
const key = await subtle.importKey(format, keyData, {
name: 'HMAC',
hash
}, true, ['sign', 'verify']);
return key;
}
Wrapping and unwrapping keys#
const { subtle } = require('node:crypto').webcrypto;
async function generateAndWrapHmacKey(format = 'jwk', hash = 'SHA-512') {
const [
key,
wrappingKey,
] = await Promise.all([
subtle.generateKey({
name: 'HMAC', hash
}, true, ['sign', 'verify']),
subtle.generateKey({
name: 'AES-KW',
length: 256
}, true, ['wrapKey', 'unwrapKey']),
]);
const wrappedKey = await subtle.wrapKey(format, key, wrappingKey, 'AES-KW');
return { wrappedKey, wrappingKey };
}
async function unwrapHmacKey(
wrappedKey,
wrappingKey,
format = 'jwk',
hash = 'SHA-512') {
const key = await subtle.unwrapKey(
format,
wrappedKey,
wrappingKey,
'AES-KW',
{ name: 'HMAC', hash },
true,
['sign', 'verify']);
return key;
}
Sign and verify#
const { subtle } = require('node:crypto').webcrypto;
async function sign(key, data) {
const ec = new TextEncoder();
const signature =
await subtle.sign('RSASSA-PKCS1-v1_5', key, ec.encode(data));
return signature;
}
async function verify(key, signature, data) {
const ec = new TextEncoder();
const verified =
await subtle.verify(
'RSASSA-PKCS1-v1_5',
key,
signature,
ec.encode(data));
return verified;
}
Deriving bits and keys#
const { subtle } = require('node:crypto').webcrypto;
async function pbkdf2(pass, salt, iterations = 1000, length = 256) {
const ec = new TextEncoder();
const key = await subtle.importKey(
'raw',
ec.encode(pass),
'PBKDF2',
false,
['deriveBits']);
const bits = await subtle.deriveBits({
name: 'PBKDF2',
hash: 'SHA-512',
salt: ec.encode(salt),
iterations
}, key, length);
return bits;
}
async function pbkdf2Key(pass, salt, iterations = 1000, length = 256) {
const ec = new TextEncoder();
const keyMaterial = await subtle.importKey(
'raw',
ec.encode(pass),
'PBKDF2',
false,
['deriveKey']);
const key = await subtle.deriveKey({
name: 'PBKDF2',
hash: 'SHA-512',
salt: ec.encode(salt),
iterations
}, keyMaterial, {
name: 'AES-GCM',
length: 256
}, true, ['encrypt', 'decrypt']);
return key;
}
Digest#
const { subtle } = require('node:crypto').webcrypto;
async function digest(data, algorithm = 'SHA-512') {
const ec = new TextEncoder();
const digest = await subtle.digest(algorithm, ec.encode(data));
return digest;
}
Algorithm matrix#
The table details the algorithms supported by the Node.js Web Crypto API
implementation and the APIs supported for each:
Algorithm | generateKey | exportKey | importKey | encrypt | decrypt | wrapKey | unwrapKey | deriveBits | deriveKey | sign | verify | digest |
---|
'RSASSA-PKCS1-v1_5' | ✔ | ✔ | ✔ | | | | | | | ✔ | ✔ | |
'RSA-PSS' | ✔ | ✔ | ✔ | | | | | | | ✔ | ✔ | |
'RSA-OAEP' | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | | | | |
'ECDSA' | ✔ | ✔ | ✔ | | | | | | | ✔ | ✔ | |
'Ed25519' 1 | ✔ | ✔ | ✔ | | | | | | | ✔ | ✔ | |
'Ed448' 1 | ✔ | ✔ | ✔ | | | | | | | ✔ | ✔ | |
'ECDH' | ✔ | ✔ | ✔ | | | | | ✔ | ✔ | | | |
'X25519' 1 | ✔ | ✔ | ✔ | | | | | ✔ | ✔ | | | |
'X448' 1 | ✔ | ✔ | ✔ | | | | | ✔ | ✔ | | | |
'AES-CTR' | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | | | | |
'AES-CBC' | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | | | | |
'AES-GCM' | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | | | | |
'AES-KW' | ✔ | ✔ | ✔ | | | ✔ | ✔ | | | | | |
'HMAC' | ✔ | ✔ | ✔ | | | | | | | ✔ | ✔ | |
'HKDF' | | ✔ | ✔ | | | | | ✔ | ✔ | | | |
'PBKDF2' | | ✔ | ✔ | | | | | ✔ | ✔ | | | |
'SHA-1' | | | | | | | | | | | | ✔ |
'SHA-256' | | | | | | | | | | | | ✔ |
'SHA-384' | | | | | | | | | | | | ✔ |
'SHA-512' | | | | | | | | | | | | ✔ |
Class: Crypto
#
Added in: v15.0.0
Calling require('node:crypto').webcrypto
returns an instance of the Crypto
class. Crypto
is a singleton that provides access to the remainder of the
crypto API.
crypto.subtle
#
Added in: v15.0.0
Provides access to the SubtleCrypto
API.
crypto.getRandomValues(typedArray)
#
Added in: v15.0.0
Generates cryptographically strong random values. The given typedArray
is
filled with random values, and a reference to typedArray
is returned.
The given typedArray
must be an integer-based instance of <TypedArray>,
i.e. Float32Array
and Float64Array
are not accepted.
An error will be thrown if the given typedArray
is larger than 65,536 bytes.
crypto.randomUUID()
#
Added in: v16.7.0
Generates a random RFC 4122 version 4 UUID. The UUID is generated using a
cryptographic pseudorandom number generator.
Class: CryptoKey
#
Added in: v15.0.0
cryptoKey.algorithm
#
Added in: v15.0.0
An object detailing the algorithm for which the key can be used along with
additional algorithm-specific parameters.
Read-only.
cryptoKey.extractable
Added in: v15.0.0
When true
, the <CryptoKey> can be extracted using either
subtleCrypto.exportKey()
or subtleCrypto.wrapKey()
.
Read-only.
cryptoKey.type
#
Added in: v15.0.0
- Type: <string> One of
'secret'
, 'private'
, or 'public'
.
A string identifying whether the key is a symmetric ('secret'
) or
asymmetric ('private'
or 'public'
) key.
cryptoKey.usages
#
Added in: v15.0.0
An array of strings identifying the operations for which the
key may be used.
The possible usages are:
'encrypt'
- The key may be used to encrypt data.
'decrypt'
- The key may be used to decrypt data.
'sign'
- The key may be used to generate digital signatures.
'verify'
- The key may be used to verify digital signatures.
'deriveKey'
- The key may be used to derive a new key.
'deriveBits'
- The key may be used to derive bits.
'wrapKey'
- The key may be used to wrap another key.
'unwrapKey'
- The key may be used to unwrap another key.
Valid key usages depend on the key algorithm (identified by
cryptokey.algorithm.name
).
Key Type | 'encrypt' | 'decrypt' | 'sign' | 'verify' | 'deriveKey' | 'deriveBits' | 'wrapKey' | 'unwrapKey' |
---|
'AES-CBC' | ✔ | ✔ | | | | | ✔ | ✔ |
'AES-CTR' | ✔ | ✔ | | | | | ✔ | ✔ |
'AES-GCM' | ✔ | ✔ | | | | | ✔ | ✔ |
'AES-KW' | | | | | | | ✔ | ✔ |
'ECDH' | | | | | ✔ | ✔ | | |
'X25519' 1 | | | | | ✔ | ✔ | | |
'X448' 1 | | | | | ✔ | ✔ | | |
'ECDSA' | | | ✔ | ✔ | | | | |
'Ed25519' 1 | | | ✔ | ✔ | | | | |
'Ed448' 1 | | | ✔ | ✔ | | | | |
'HDKF' | | | | | ✔ | ✔ | | |
'HMAC' | | | ✔ | ✔ | | | | |
'PBKDF2' | | | | | ✔ | ✔ | | |
'RSA-OAEP' | ✔ | ✔ | | | | | ✔ | ✔ |
'RSA-PSS' | | | ✔ | ✔ | | | | |
'RSASSA-PKCS1-v1_5' | | | ✔ | ✔ | | | | |
Class: CryptoKeyPair
#
Added in: v15.0.0
The CryptoKeyPair
is a simple dictionary object with publicKey
and
privateKey
properties, representing an asymmetric key pair.
cryptoKeyPair.privateKey
#
Added in: v15.0.0
cryptoKeyPair.publicKey
#
Added in: v15.0.0
Class: SubtleCrypto
#
Added in: v15.0.0
subtle.decrypt(algorithm, key, data)
#
Added in: v15.0.0
Using the method and parameters specified in algorithm
and the keying
material provided by key
, subtle.decrypt()
attempts to decipher the
provided data
. If successful, the returned promise will be resolved with
an <ArrayBuffer> containing the plaintext result.
The algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM
'
subtle.deriveBits(algorithm, baseKey, length)
#
Using the method and parameters specified in algorithm
and the keying
material provided by baseKey
, subtle.deriveBits()
attempts to generate
length
bits. The Node.js implementation requires that length
is a
multiple of 8
. If successful, the returned promise will be resolved with
an <ArrayBuffer> containing the generated data.
The algorithms currently supported include:
subtle.deriveKey(algorithm, baseKey, derivedKeyAlgorithm, extractable, keyUsages)
Using the method and parameters specified in algorithm
, and the keying
material provided by baseKey
, subtle.deriveKey()
attempts to generate
a new <CryptoKey> based on the method and parameters in derivedKeyAlgorithm
.
Calling subtle.deriveKey()
is equivalent to calling subtle.deriveBits()
to
generate raw keying material, then passing the result into the
subtle.importKey()
method using the deriveKeyAlgorithm
, extractable
, and
keyUsages
parameters as input.
The algorithms currently supported include:
subtle.digest(algorithm, data)
#
Added in: v15.0.0
Using the method identified by algorithm
, subtle.digest()
attempts to
generate a digest of data
. If successful, the returned promise is resolved
with an <ArrayBuffer> containing the computed digest.
If algorithm
is provided as a <string>, it must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If algorithm
is provided as an <Object>, it must have a name
property
whose value is one of the above.
subtle.encrypt(algorithm, key, data)
#
Added in: v15.0.0
Using the method and parameters specified by algorithm
and the keying
material provided by key
, subtle.encrypt()
attempts to encipher data
.
If successful, the returned promise is resolved with an <ArrayBuffer>
containing the encrypted result.
The algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM
'
subtle.exportKey(format, key)
#
Exports the given key into the specified format, if supported.
If the <CryptoKey> is not extractable, the returned promise will reject.
When format
is either 'pkcs8'
or 'spki'
and the export is successful,
the returned promise will be resolved with an <ArrayBuffer> containing the
exported key data.
When format
is 'jwk'
and the export is successful, the returned promise
will be resolved with a JavaScript object conforming to the JSON Web Key
specification.
Key Type | 'spki' | 'pkcs8' | 'jwk' | 'raw' |
---|
'AES-CBC' | | | ✔ | ✔ |
'AES-CTR' | | | ✔ | ✔ |
'AES-GCM' | | | ✔ | ✔ |
'AES-KW' | | | ✔ | ✔ |
'ECDH' | ✔ | ✔ | ✔ | ✔ |
'ECDSA' | ✔ | ✔ | ✔ | ✔ |
'Ed25519' 1 | ✔ | ✔ | ✔ | ✔ |
'Ed448' 1 | ✔ | ✔ | ✔ | ✔ |
'HDKF' | | | | |
'HMAC' | | | ✔ | ✔ |
'PBKDF2' | | | | |
'RSA-OAEP' | ✔ | ✔ | ✔ | |
'RSA-PSS' | ✔ | ✔ | ✔ | |
'RSASSA-PKCS1-v1_5' | ✔ | ✔ | ✔ | |
subtle.generateKey(algorithm, extractable, keyUsages)
Added in: v15.0.0
Using the method and parameters provided in algorithm
, subtle.generateKey()
attempts to generate new keying material. Depending the method used, the method
may generate either a single <CryptoKey> or a <CryptoKeyPair>.
The <CryptoKeyPair> (public and private key) generating algorithms supported
include:
'RSASSA-PKCS1-v1_5'
'RSA-PSS'
'RSA-OAEP'
'ECDSA'
'Ed25519'
1
'Ed448'
1
'ECDH'
'X25519'
1
'X448'
1
The <CryptoKey> (secret key) generating algorithms supported include:
'HMAC'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
subtle.importKey(format, keyData, algorithm, extractable, keyUsages)
The subtle.importKey()
method attempts to interpret the provided keyData
as the given format
to create a <CryptoKey> instance using the provided
algorithm
, extractable
, and keyUsages
arguments. If the import is
successful, the returned promise will be resolved with the created <CryptoKey>.
If importing a 'PBKDF2'
key, extractable
must be false
.
The algorithms currently supported include:
Key Type | 'spki' | 'pkcs8' | 'jwk' | 'raw' |
---|
'AES-CBC' | | | ✔ | ✔ |
'AES-CTR' | | | ✔ | ✔ |
'AES-GCM' | | | ✔ | ✔ |
'AES-KW' | | | ✔ | ✔ |
'ECDH' | ✔ | ✔ | ✔ | ✔ |
'X25519' 1 | ✔ | ✔ | ✔ | ✔ |
'X448' 1 | ✔ | ✔ | ✔ | ✔ |
'ECDSA' | ✔ | ✔ | ✔ | ✔ |
'Ed25519' 1 | ✔ | ✔ | ✔ | ✔ |
'Ed448' 1 | ✔ | ✔ | ✔ | ✔ |
'HDKF' | | | | ✔ |
'HMAC' | | | ✔ | ✔ |
'PBKDF2' | | | | ✔ |
'RSA-OAEP' | ✔ | ✔ | ✔ | |
'RSA-PSS' | ✔ | ✔ | ✔ | |
'RSASSA-PKCS1-v1_5' | ✔ | ✔ | ✔ | |
subtle.sign(algorithm, key, data)
#
Using the method and parameters given by algorithm
and the keying material
provided by key
, subtle.sign()
attempts to generate a cryptographic
signature of data
. If successful, the returned promise is resolved with
an <ArrayBuffer> containing the generated signature.
The algorithms currently supported include:
'RSASSA-PKCS1-v1_5'
'RSA-PSS'
'ECDSA'
'Ed25519'
1
'Ed448'
1
'HMAC'
subtle.unwrapKey(format, wrappedKey, unwrappingKey, unwrapAlgo, unwrappedKeyAlgo, extractable, keyUsages)
Added in: v15.0.0
In cryptography, "wrapping a key" refers to exporting and then encrypting the
keying material. The subtle.unwrapKey()
method attempts to decrypt a wrapped
key and create a <CryptoKey> instance. It is equivalent to calling
subtle.decrypt()
first on the encrypted key data (using the wrappedKey
,
unwrapAlgo
, and unwrappingKey
arguments as input) then passing the results
in to the subtle.importKey()
method using the unwrappedKeyAlgo
,
extractable
, and keyUsages
arguments as inputs. If successful, the returned
promise is resolved with a <CryptoKey> object.
The wrapping algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
The unwrapped key algorithms supported include:
'RSASSA-PKCS1-v1_5'
'RSA-PSS'
'RSA-OAEP'
'ECDSA'
'ECDH'
'HMAC'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
subtle.verify(algorithm, key, signature, data)
#
Using the method and parameters given in algorithm
and the keying material
provided by key
, subtle.verify()
attempts to verify that signature
is
a valid cryptographic signature of data
. The returned promise is resolved
with either true
or false
.
The algorithms currently supported include:
'RSASSA-PKCS1-v1_5'
'RSA-PSS'
'ECDSA'
'Ed25519'
1
'Ed448'
1
'HMAC'
subtle.wrapKey(format, key, wrappingKey, wrapAlgo)
#
Added in: v15.0.0
In cryptography, "wrapping a key" refers to exporting and then encrypting the
keying material. The subtle.wrapKey()
method exports the keying material into
the format identified by format
, then encrypts it using the method and
parameters specified by wrapAlgo
and the keying material provided by
wrappingKey
. It is the equivalent to calling subtle.exportKey()
using
format
and key
as the arguments, then passing the result to the
subtle.encrypt()
method using wrappingKey
and wrapAlgo
as inputs. If
successful, the returned promise will be resolved with an <ArrayBuffer>
containing the encrypted key data.
The wrapping algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
Algorithm parameters#
The algorithm parameter objects define the methods and parameters used by
the various <SubtleCrypto> methods. While described here as "classes", they
are simple JavaScript dictionary objects.
Class: AlgorithmIdentifier
#
Added in: v16.17.0
algorithmIdentifier.name
#
Added in: v16.17.0
Class: AesCbcParams
#
Added in: v15.0.0
aesCbcParams.iv
#
Added in: v15.0.0
Provides the initialization vector. It must be exactly 16-bytes in length
and should be unpredictable and cryptographically random.
aesCbcParams.name
#
Added in: v15.0.0
Class: AesCtrParams
#
Added in: v15.0.0
aesCtrParams.counter
#
Added in: v15.0.0
The initial value of the counter block. This must be exactly 16 bytes long.
The AES-CTR
method uses the rightmost length
bits of the block as the
counter and the remaining bits as the nonce.
aesCtrParams.length
#
Added in: v15.0.0
- Type: <number> The number of bits in the
aesCtrParams.counter
that are
to be used as the counter.
aesCtrParams.name
#
Added in: v15.0.0
Class: AesGcmParams
#
Added in: v15.0.0
aesGcmParams.additionalData
#
Added in: v15.0.0
With the AES-GCM method, the additionalData
is extra input that is not
encrypted but is included in the authentication of the data. The use of
additionalData
is optional.
aesGcmParams.iv
#
Added in: v15.0.0
The initialization vector must be unique for every encryption operation using a
given key.
Ideally, this is a deterministic 12-byte value that is computed in such a way
that it is guaranteed to be unique across all invocations that use the same key.
Alternatively, the initialization vector may consist of at least 12
cryptographically random bytes. For more information on constructing
initialization vectors for AES-GCM, refer to Section 8 of NIST SP 800-38D.
aesGcmParams.name
#
Added in: v15.0.0
aesGcmParams.tagLength
#
Added in: v15.0.0
- Type: <number> The size in bits of the generated authentication tag.
This values must be one of
32
, 64
, 96
, 104
, 112
, 120
, or
128
. Default: 128
.
Class: AesKeyGenParams
#
Added in: v15.0.0
aesKeyGenParams.length
#
Added in: v15.0.0
The length of the AES key to be generated. This must be either 128
, 192
,
or 256
.
aesKeyGenParams.name
#
Added in: v15.0.0
- Type: <string> Must be one of
'AES-CBC'
, 'AES-CTR'
, 'AES-GCM'
, or
'AES-KW'
Class: EcdhKeyDeriveParams
#
Added in: v15.0.0
ecdhKeyDeriveParams.name
#
Added in: v15.0.0
- Type: <string> Must be
'ECDH'
, 'X25519'
, or 'X448'
.
ecdhKeyDeriveParams.public
#
Added in: v15.0.0
ECDH key derivation operates by taking as input one parties private key and
another parties public key -- using both to generate a common shared secret.
The ecdhKeyDeriveParams.public
property is set to the other parties public
key.
Class: EcdsaParams
#
Added in: v15.0.0
ecdsaParams.hash
#
Added in: v15.0.0
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property
whose value is one of the above listed values.
ecdsaParams.name
#
Added in: v15.0.0
Class: EcKeyGenParams
#
Added in: v15.0.0
ecKeyGenParams.name
#
Added in: v15.0.0
- Type: <string> Must be one of
'ECDSA'
or 'ECDH'
.
ecKeyGenParams.namedCurve
#
Added in: v15.0.0
- Type: <string> Must be one of
'P-256'
, 'P-384'
, 'P-521'
.
Class: EcKeyImportParams
#
Added in: v15.0.0
ecKeyImportParams.name
#
Added in: v15.0.0
- Type: <string> Must be one of
'ECDSA'
or 'ECDH'
.
ecKeyImportParams.namedCurve
#
Added in: v15.0.0
- Type: <string> Must be one of
'P-256'
, 'P-384'
, 'P-521'
.
Class: Ed448Params
#
Added in: v15.0.0
ed448Params.name
#
Added in: v16.17.0
ed448Params.context
#
Added in: v16.17.0
The context
member represents the optional context data to associate with
the message.
The Node.js Web Crypto API implementation only supports zero-length context
which is equivalent to not providing context at all.
Class: HkdfParams
#
Added in: v15.0.0
hkdfParams.hash
#
Added in: v15.0.0
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property
whose value is one of the above listed values.
hkdfParams.info
#
Added in: v15.0.0
Provides application-specific contextual input to the HKDF algorithm.
This can be zero-length but must be provided.
hkdfParams.name
#
Added in: v15.0.0
hkdfParams.salt
#
Added in: v15.0.0
The salt value significantly improves the strength of the HKDF algorithm.
It should be random or pseudorandom and should be the same length as the
output of the digest function (for instance, if using 'SHA-256'
as the
digest, the salt should be 256-bits of random data).
Class: HmacImportParams
#
Added in: v15.0.0
hmacImportParams.hash
#
Added in: v15.0.0
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property
whose value is one of the above listed values.
hmacImportParams.length
#
Added in: v15.0.0
The optional number of bits in the HMAC key. This is optional and should
be omitted for most cases.
hmacImportParams.name
#
Added in: v15.0.0
Class: HmacKeyGenParams
#
Added in: v15.0.0
hmacKeyGenParams.hash
#
Added in: v15.0.0
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property
whose value is one of the above listed values.
hmacKeyGenParams.length
#
Added in: v15.0.0
The number of bits to generate for the HMAC key. If omitted,
the length will be determined by the hash algorithm used.
This is optional and should be omitted for most cases.
hmacKeyGenParams.name
#
Added in: v15.0.0
Class: Pbkdf2Params
#
Added in: v15.0.0
pbkdb2Params.hash
#
Added in: v15.0.0
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property
whose value is one of the above listed values.
pbkdf2Params.iterations
#
Added in: v15.0.0
The number of iterations the PBKDF2 algorithm should make when deriving bits.
pbkdf2Params.name
#
Added in: v15.0.0
pbkdf2Params.salt
#
Added in: v15.0.0
Should be at least 16 random or pseudorandom bytes.
Class: RsaHashedImportParams
#
Added in: v15.0.0
rsaHashedImportParams.hash
#
Added in: v15.0.0
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property
whose value is one of the above listed values.
rsaHashedImportParams.name
#
Added in: v15.0.0
- Type: <string> Must be one of
'RSASSA-PKCS1-v1_5'
, 'RSA-PSS'
, or
'RSA-OAEP'
.
Class: RsaHashedKeyGenParams
#
Added in: v15.0.0
rsaHashedKeyGenParams.hash
#
Added in: v15.0.0
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property
whose value is one of the above listed values.
rsaHashedKeyGenParams.modulusLength
#
Added in: v15.0.0
The length in bits of the RSA modulus. As a best practice, this should be
at least 2048
.
rsaHashedKeyGenParams.name
#
Added in: v15.0.0
- Type: <string> Must be one of
'RSASSA-PKCS1-v1_5'
, 'RSA-PSS'
, or
'RSA-OAEP'
.
rsaHashedKeyGenParams.publicExponent
#
Added in: v15.0.0
The RSA public exponent. This must be a <Uint8Array> containing a big-endian,
unsigned integer that must fit within 32-bits. The <Uint8Array> may contain an
arbitrary number of leading zero-bits. The value must be a prime number. Unless
there is reason to use a different value, use new Uint8Array([1, 0, 1])
(65537) as the public exponent.
Class: RsaOaepParams
#
Added in: v15.0.0
rsaOaepParams.label#
Added in: v15.0.0
An additional collection of bytes that will not be encrypted, but will be bound
to the generated ciphertext.
The rsaOaepParams.label
parameter is optional.
rsaOaepParams.name#
Added in: v15.0.0
Class: RsaPssParams
#
Added in: v15.0.0
rsaPssParams.name
#
Added in: v15.0.0
rsaPssParams.saltLength
#
Added in: v15.0.0
The length (in bytes) of the random salt to use.