⚝
One Hat Cyber Team
⚝
Your IP:
216.73.216.177
Server IP:
50.6.168.112
Server:
Linux server-617809.webnetzimbabwe.com 5.14.0-570.25.1.el9_6.x86_64 #1 SMP PREEMPT_DYNAMIC Wed Jul 9 04:57:09 EDT 2025 x86_64
Server Software:
Apache
PHP Version:
8.4.10
Buat File
|
Buat Folder
Eksekusi
Dir :
~
/
usr
/
include
/
c++
/
11
/
experimental
/
bits
/
View File Name :
simd.h
// Definition of the public simd interfaces -*- C++ -*- // Copyright (C) 2020-2021 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see //
. #ifndef _GLIBCXX_EXPERIMENTAL_SIMD_H #define _GLIBCXX_EXPERIMENTAL_SIMD_H #if __cplusplus >= 201703L #include "simd_detail.h" #include "numeric_traits.h" #include
#include
#ifdef _GLIBCXX_DEBUG_UB #include
// for stderr #endif #include
#include
#include
#include
#if _GLIBCXX_SIMD_X86INTRIN #include
#elif _GLIBCXX_SIMD_HAVE_NEON #pragma GCC diagnostic push // narrowing conversion of '__a' from 'uint64_t' {aka 'long long unsigned int'} to // 'int64x1_t' {aka 'long long int'} [-Wnarrowing] #pragma GCC diagnostic ignored "-Wnarrowing" #include
#pragma GCC diagnostic pop #endif /** @ingroup ts_simd * @{ */ /* There are several closely related types, with the following naming * convention: * _Tp: vectorizable (arithmetic) type (or any type) * _TV: __vector_type_t<_Tp, _Np> * _TW: _SimdWrapper<_Tp, _Np> * _TI: __intrinsic_type_t<_Tp, _Np> * _TVT: _VectorTraits<_TV> or _VectorTraits<_TW> * If one additional type is needed use _U instead of _T. * Otherwise use _T\d, _TV\d, _TW\d, TI\d, _TVT\d. * * More naming conventions: * _Ap or _Abi: An ABI tag from the simd_abi namespace * _Ip: often used for integer types with sizeof(_Ip) == sizeof(_Tp), * _IV, _IW as for _TV, _TW * _Np: number of elements (not bytes) * _Bytes: number of bytes * * Variable names: * __k: mask object (vector- or bitmask) */ _GLIBCXX_SIMD_BEGIN_NAMESPACE #if !_GLIBCXX_SIMD_X86INTRIN using __m128 [[__gnu__::__vector_size__(16)]] = float; using __m128d [[__gnu__::__vector_size__(16)]] = double; using __m128i [[__gnu__::__vector_size__(16)]] = long long; using __m256 [[__gnu__::__vector_size__(32)]] = float; using __m256d [[__gnu__::__vector_size__(32)]] = double; using __m256i [[__gnu__::__vector_size__(32)]] = long long; using __m512 [[__gnu__::__vector_size__(64)]] = float; using __m512d [[__gnu__::__vector_size__(64)]] = double; using __m512i [[__gnu__::__vector_size__(64)]] = long long; #endif namespace simd_abi { // simd_abi forward declarations {{{ // implementation details: struct _Scalar; template
struct _Fixed; // There are two major ABIs that appear on different architectures. // Both have non-boolean values packed into an N Byte register // -> #elements = N / sizeof(T) // Masks differ: // 1. Use value vector registers for masks (all 0 or all 1) // 2. Use bitmasks (mask registers) with one bit per value in the corresponding // value vector // // Both can be partially used, masking off the rest when doing horizontal // operations or operations that can trap (e.g. FP_INVALID or integer division // by 0). This is encoded as the number of used bytes. template
struct _VecBuiltin; template
struct _VecBltnBtmsk; template
using _VecN = _VecBuiltin
; template
using _Sse = _VecBuiltin<_UsedBytes>; template
using _Avx = _VecBuiltin<_UsedBytes>; template
using _Avx512 = _VecBltnBtmsk<_UsedBytes>; template
using _Neon = _VecBuiltin<_UsedBytes>; // implementation-defined: using __sse = _Sse<>; using __avx = _Avx<>; using __avx512 = _Avx512<>; using __neon = _Neon<>; using __neon128 = _Neon<16>; using __neon64 = _Neon<8>; // standard: template
struct deduce; template
using fixed_size = _Fixed<_Np>; using scalar = _Scalar; // }}} } // namespace simd_abi // forward declarations is_simd(_mask), simd(_mask), simd_size {{{ template
struct is_simd; template
struct is_simd_mask; template
class simd; template
class simd_mask; template
struct simd_size; // }}} // load/store flags {{{ struct element_aligned_tag { template
static constexpr size_t _S_alignment = alignof(_Up); template
_GLIBCXX_SIMD_INTRINSIC static constexpr _Up* _S_apply(_Up* __ptr) { return __ptr; } }; struct vector_aligned_tag { template
static constexpr size_t _S_alignment = std::__bit_ceil(sizeof(_Up) * _Tp::size()); template
_GLIBCXX_SIMD_INTRINSIC static constexpr _Up* _S_apply(_Up* __ptr) { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _S_alignment<_Tp, _Up>)); } }; template
struct overaligned_tag { template
static constexpr size_t _S_alignment = _Np; template
_GLIBCXX_SIMD_INTRINSIC static constexpr _Up* _S_apply(_Up* __ptr) { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _Np)); } }; inline constexpr element_aligned_tag element_aligned = {}; inline constexpr vector_aligned_tag vector_aligned = {}; template
inline constexpr overaligned_tag<_Np> overaligned = {}; // }}} template
using _SizeConstant = integral_constant
; namespace __detail { struct _Minimum { template
_GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator()(_Tp __a, _Tp __b) const { using std::min; return min(__a, __b); } }; struct _Maximum { template
_GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator()(_Tp __a, _Tp __b) const { using std::max; return max(__a, __b); } }; } // namespace __detail // unrolled/pack execution helpers // __execute_n_times{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr void __execute_on_index_sequence(_Fp&& __f, index_sequence<_I...>) { ((void)__f(_SizeConstant<_I>()), ...); } template
_GLIBCXX_SIMD_INTRINSIC constexpr void __execute_on_index_sequence(_Fp&&, index_sequence<>) { } template
_GLIBCXX_SIMD_INTRINSIC constexpr void __execute_n_times(_Fp&& __f) { __execute_on_index_sequence(static_cast<_Fp&&>(__f), make_index_sequence<_Np>{}); } // }}} // __generate_from_n_evaluations{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr _R __execute_on_index_sequence_with_return(_Fp&& __f, index_sequence<_I...>) { return _R{__f(_SizeConstant<_I>())...}; } template
_GLIBCXX_SIMD_INTRINSIC constexpr _R __generate_from_n_evaluations(_Fp&& __f) { return __execute_on_index_sequence_with_return<_R>( static_cast<_Fp&&>(__f), make_index_sequence<_Np>{}); } // }}} // __call_with_n_evaluations{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_n_evaluations(index_sequence<_I...>, _F0&& __f0, _FArgs&& __fargs) { return __f0(__fargs(_SizeConstant<_I>())...); } template
_GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_n_evaluations(_F0&& __f0, _FArgs&& __fargs) { return __call_with_n_evaluations(make_index_sequence<_Np>{}, static_cast<_F0&&>(__f0), static_cast<_FArgs&&>(__fargs)); } // }}} // __call_with_subscripts{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_subscripts(_Tp&& __x, index_sequence<_It...>, _Fp&& __fun) { return __fun(__x[_First + _It]...); } template
_GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_subscripts(_Tp&& __x, _Fp&& __fun) { return __call_with_subscripts<_First>(static_cast<_Tp&&>(__x), make_index_sequence<_Np>(), static_cast<_Fp&&>(__fun)); } // }}} // vvv ---- type traits ---- vvv // integer type aliases{{{ using _UChar = unsigned char; using _SChar = signed char; using _UShort = unsigned short; using _UInt = unsigned int; using _ULong = unsigned long; using _ULLong = unsigned long long; using _LLong = long long; //}}} // __first_of_pack{{{ template
struct __first_of_pack { using type = _T0; }; template
using __first_of_pack_t = typename __first_of_pack<_Ts...>::type; //}}} // __value_type_or_identity_t {{{ template
typename _Tp::value_type __value_type_or_identity_impl(int); template
_Tp __value_type_or_identity_impl(float); template
using __value_type_or_identity_t = decltype(__value_type_or_identity_impl<_Tp>(int())); // }}} // __is_vectorizable {{{ template
struct __is_vectorizable : public is_arithmetic<_Tp> {}; template <> struct __is_vectorizable
: public false_type {}; template
inline constexpr bool __is_vectorizable_v = __is_vectorizable<_Tp>::value; // Deduces to a vectorizable type template
>> using _Vectorizable = _Tp; // }}} // _LoadStorePtr / __is_possible_loadstore_conversion {{{ template
struct __is_possible_loadstore_conversion : conjunction<__is_vectorizable<_Ptr>, __is_vectorizable<_ValueType>> {}; template <> struct __is_possible_loadstore_conversion
: true_type {}; // Deduces to a type allowed for load/store with the given value type. template
::value>> using _LoadStorePtr = _Ptr; // }}} // __is_bitmask{{{ template
> struct __is_bitmask : false_type {}; template
inline constexpr bool __is_bitmask_v = __is_bitmask<_Tp>::value; // the __mmaskXX case: template
struct __is_bitmask<_Tp, void_t
() = declval<_Tp>() & 1u)>> : true_type {}; // }}} // __int_for_sizeof{{{ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpedantic" template
constexpr auto __int_for_sizeof() { static_assert(_Bytes > 0); if constexpr (_Bytes == sizeof(int)) return int(); #ifdef __clang__ else if constexpr (_Bytes == sizeof(char)) return char(); #else else if constexpr (_Bytes == sizeof(_SChar)) return _SChar(); #endif else if constexpr (_Bytes == sizeof(short)) return short(); #ifndef __clang__ else if constexpr (_Bytes == sizeof(long)) return long(); #endif else if constexpr (_Bytes == sizeof(_LLong)) return _LLong(); #ifdef __SIZEOF_INT128__ else if constexpr (_Bytes == sizeof(__int128)) return __int128(); #endif // __SIZEOF_INT128__ else if constexpr (_Bytes % sizeof(int) == 0) { constexpr size_t _Np = _Bytes / sizeof(int); struct _Ip { int _M_data[_Np]; _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator&(_Ip __rhs) const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __rhs._M_data[__i] & _M_data[__i]; }); } _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator|(_Ip __rhs) const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __rhs._M_data[__i] | _M_data[__i]; }); } _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator^(_Ip __rhs) const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __rhs._M_data[__i] ^ _M_data[__i]; }); } _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator~() const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return ~_M_data[__i]; }); } }; return _Ip{}; } else static_assert(_Bytes == 0, "this should be unreachable"); } #pragma GCC diagnostic pop template
using __int_for_sizeof_t = decltype(__int_for_sizeof
()); template
using __int_with_sizeof_t = decltype(__int_for_sizeof<_Np>()); // }}} // __is_fixed_size_abi{{{ template
struct __is_fixed_size_abi : false_type {}; template
struct __is_fixed_size_abi
> : true_type {}; template
inline constexpr bool __is_fixed_size_abi_v = __is_fixed_size_abi<_Tp>::value; // }}} // constexpr feature detection{{{ constexpr inline bool __have_mmx = _GLIBCXX_SIMD_HAVE_MMX; constexpr inline bool __have_sse = _GLIBCXX_SIMD_HAVE_SSE; constexpr inline bool __have_sse2 = _GLIBCXX_SIMD_HAVE_SSE2; constexpr inline bool __have_sse3 = _GLIBCXX_SIMD_HAVE_SSE3; constexpr inline bool __have_ssse3 = _GLIBCXX_SIMD_HAVE_SSSE3; constexpr inline bool __have_sse4_1 = _GLIBCXX_SIMD_HAVE_SSE4_1; constexpr inline bool __have_sse4_2 = _GLIBCXX_SIMD_HAVE_SSE4_2; constexpr inline bool __have_xop = _GLIBCXX_SIMD_HAVE_XOP; constexpr inline bool __have_avx = _GLIBCXX_SIMD_HAVE_AVX; constexpr inline bool __have_avx2 = _GLIBCXX_SIMD_HAVE_AVX2; constexpr inline bool __have_bmi = _GLIBCXX_SIMD_HAVE_BMI1; constexpr inline bool __have_bmi2 = _GLIBCXX_SIMD_HAVE_BMI2; constexpr inline bool __have_lzcnt = _GLIBCXX_SIMD_HAVE_LZCNT; constexpr inline bool __have_sse4a = _GLIBCXX_SIMD_HAVE_SSE4A; constexpr inline bool __have_fma = _GLIBCXX_SIMD_HAVE_FMA; constexpr inline bool __have_fma4 = _GLIBCXX_SIMD_HAVE_FMA4; constexpr inline bool __have_f16c = _GLIBCXX_SIMD_HAVE_F16C; constexpr inline bool __have_popcnt = _GLIBCXX_SIMD_HAVE_POPCNT; constexpr inline bool __have_avx512f = _GLIBCXX_SIMD_HAVE_AVX512F; constexpr inline bool __have_avx512dq = _GLIBCXX_SIMD_HAVE_AVX512DQ; constexpr inline bool __have_avx512vl = _GLIBCXX_SIMD_HAVE_AVX512VL; constexpr inline bool __have_avx512bw = _GLIBCXX_SIMD_HAVE_AVX512BW; constexpr inline bool __have_avx512dq_vl = __have_avx512dq && __have_avx512vl; constexpr inline bool __have_avx512bw_vl = __have_avx512bw && __have_avx512vl; constexpr inline bool __have_neon = _GLIBCXX_SIMD_HAVE_NEON; constexpr inline bool __have_neon_a32 = _GLIBCXX_SIMD_HAVE_NEON_A32; constexpr inline bool __have_neon_a64 = _GLIBCXX_SIMD_HAVE_NEON_A64; constexpr inline bool __support_neon_float = #if defined __GCC_IEC_559 __GCC_IEC_559 == 0; #elif defined __FAST_MATH__ true; #else false; #endif #ifdef _ARCH_PWR10 constexpr inline bool __have_power10vec = true; #else constexpr inline bool __have_power10vec = false; #endif #ifdef __POWER9_VECTOR__ constexpr inline bool __have_power9vec = true; #else constexpr inline bool __have_power9vec = false; #endif #if defined __POWER8_VECTOR__ constexpr inline bool __have_power8vec = true; #else constexpr inline bool __have_power8vec = __have_power9vec; #endif #if defined __VSX__ constexpr inline bool __have_power_vsx = true; #else constexpr inline bool __have_power_vsx = __have_power8vec; #endif #if defined __ALTIVEC__ constexpr inline bool __have_power_vmx = true; #else constexpr inline bool __have_power_vmx = __have_power_vsx; #endif // }}} // __is_scalar_abi {{{ template
constexpr bool __is_scalar_abi() { return is_same_v
; } // }}} // __abi_bytes_v {{{ template
class _Abi, int _Bytes> constexpr int __abi_bytes_impl(_Abi<_Bytes>*) { return _Bytes; } template
constexpr int __abi_bytes_impl(_Tp*) { return -1; } template
inline constexpr int __abi_bytes_v = __abi_bytes_impl(static_cast<_Abi*>(nullptr)); // }}} // __is_builtin_bitmask_abi {{{ template
constexpr bool __is_builtin_bitmask_abi() { return is_same_v
>, _Abi>; } // }}} // __is_sse_abi {{{ template
constexpr bool __is_sse_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes <= 16 && is_same_v
, _Abi>; } // }}} // __is_avx_abi {{{ template
constexpr bool __is_avx_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes > 16 && _Bytes <= 32 && is_same_v
, _Abi>; } // }}} // __is_avx512_abi {{{ template
constexpr bool __is_avx512_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes <= 64 && is_same_v
, _Abi>; } // }}} // __is_neon_abi {{{ template
constexpr bool __is_neon_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes <= 16 && is_same_v
, _Abi>; } // }}} // __make_dependent_t {{{ template
struct __make_dependent { using type = _Up; }; template
using __make_dependent_t = typename __make_dependent<_Tp, _Up>::type; // }}} // ^^^ ---- type traits ---- ^^^ // __invoke_ub{{{ template
[[noreturn]] _GLIBCXX_SIMD_ALWAYS_INLINE void __invoke_ub([[maybe_unused]] const char* __msg, [[maybe_unused]] const _Args&... __args) { #ifdef _GLIBCXX_DEBUG_UB __builtin_fprintf(stderr, __msg, __args...); __builtin_trap(); #else __builtin_unreachable(); #endif } // }}} // __assert_unreachable{{{ template
struct __assert_unreachable { static_assert(!is_same_v<_Tp, _Tp>, "this should be unreachable"); }; // }}} // __size_or_zero_v {{{ template
::value> constexpr size_t __size_or_zero_dispatch(int) { return _Np; } template
constexpr size_t __size_or_zero_dispatch(float) { return 0; } template
inline constexpr size_t __size_or_zero_v = __size_or_zero_dispatch<_Tp, _Ap>(0); // }}} // __div_roundup {{{ inline constexpr size_t __div_roundup(size_t __a, size_t __b) { return (__a + __b - 1) / __b; } // }}} // _ExactBool{{{ class _ExactBool { const bool _M_data; public: _GLIBCXX_SIMD_INTRINSIC constexpr _ExactBool(bool __b) : _M_data(__b) {} _ExactBool(int) = delete; _GLIBCXX_SIMD_INTRINSIC constexpr operator bool() const { return _M_data; } }; // }}} // __may_alias{{{ /**@internal * Helper __may_alias<_Tp> that turns _Tp into the type to be used for an * aliasing pointer. This adds the __may_alias attribute to _Tp (with compilers * that support it). */ template
using __may_alias [[__gnu__::__may_alias__]] = _Tp; // }}} // _UnsupportedBase {{{ // simd and simd_mask base for unsupported <_Tp, _Abi> struct _UnsupportedBase { _UnsupportedBase() = delete; _UnsupportedBase(const _UnsupportedBase&) = delete; _UnsupportedBase& operator=(const _UnsupportedBase&) = delete; ~_UnsupportedBase() = delete; }; // }}} // _InvalidTraits {{{ /** * @internal * Defines the implementation of __a given <_Tp, _Abi>. * * Implementations must ensure that only valid <_Tp, _Abi> instantiations are * possible. Static assertions in the type definition do not suffice. It is * important that SFINAE works. */ struct _InvalidTraits { using _IsValid = false_type; using _SimdBase = _UnsupportedBase; using _MaskBase = _UnsupportedBase; static constexpr size_t _S_full_size = 0; static constexpr bool _S_is_partial = false; static constexpr size_t _S_simd_align = 1; struct _SimdImpl; struct _SimdMember {}; struct _SimdCastType; static constexpr size_t _S_mask_align = 1; struct _MaskImpl; struct _MaskMember {}; struct _MaskCastType; }; // }}} // _SimdTraits {{{ template
> struct _SimdTraits : _InvalidTraits {}; // }}} // __private_init, __bitset_init{{{ /** * @internal * Tag used for private init constructor of simd and simd_mask */ inline constexpr struct _PrivateInit {} __private_init = {}; inline constexpr struct _BitsetInit {} __bitset_init = {}; // }}} // __is_narrowing_conversion<_From, _To>{{{ template
, bool = is_arithmetic_v<_To>> struct __is_narrowing_conversion; // ignore "signed/unsigned mismatch" in the following trait. // The implicit conversions will do the right thing here. template
struct __is_narrowing_conversion<_From, _To, true, true> : public __bool_constant<( __digits_v<_From> > __digits_v<_To> || __finite_max_v<_From> > __finite_max_v<_To> || __finite_min_v<_From> < __finite_min_v<_To> || (is_signed_v<_From> && is_unsigned_v<_To>))> {}; template
struct __is_narrowing_conversion<_Tp, bool, true, true> : public true_type {}; template <> struct __is_narrowing_conversion
: public false_type {}; template
struct __is_narrowing_conversion<_Tp, _Tp, true, true> : public false_type {}; template
struct __is_narrowing_conversion<_From, _To, false, true> : public negation
> {}; // }}} // __converts_to_higher_integer_rank{{{ template
struct __converts_to_higher_integer_rank : public true_type {}; // this may fail for char -> short if sizeof(char) == sizeof(short) template
struct __converts_to_higher_integer_rank<_From, _To, false> : public is_same
() + declval<_To>()), _To> {}; // }}} // __data(simd/simd_mask) {{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr const auto& __data(const simd<_Tp, _Ap>& __x); template
_GLIBCXX_SIMD_INTRINSIC constexpr auto& __data(simd<_Tp, _Ap>& __x); template
_GLIBCXX_SIMD_INTRINSIC constexpr const auto& __data(const simd_mask<_Tp, _Ap>& __x); template
_GLIBCXX_SIMD_INTRINSIC constexpr auto& __data(simd_mask<_Tp, _Ap>& __x); // }}} // _SimdConverter {{{ template
struct _SimdConverter; template
struct _SimdConverter<_Tp, _Ap, _Tp, _Ap, void> { template
_GLIBCXX_SIMD_INTRINSIC const _Up& operator()(const _Up& __x) { return __x; } }; // }}} // __to_value_type_or_member_type {{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr auto __to_value_type_or_member_type(const _V& __x) -> decltype(__data(__x)) { return __data(__x); } template
_GLIBCXX_SIMD_INTRINSIC constexpr const typename _V::value_type& __to_value_type_or_member_type(const typename _V::value_type& __x) { return __x; } // }}} // __bool_storage_member_type{{{ template
struct __bool_storage_member_type; template
using __bool_storage_member_type_t = typename __bool_storage_member_type<_Size>::type; // }}} // _SimdTuple {{{ // why not tuple? // 1. tuple gives no guarantee about the storage order, but I require // storage // equivalent to array<_Tp, _Np> // 2. direct access to the element type (first template argument) // 3. enforces equal element type, only different _Abi types are allowed template
struct _SimdTuple; //}}} // __fixed_size_storage_t {{{ template
struct __fixed_size_storage; template
using __fixed_size_storage_t = typename __fixed_size_storage<_Tp, _Np>::type; // }}} // _SimdWrapper fwd decl{{{ template
> struct _SimdWrapper; template
using _SimdWrapper8 = _SimdWrapper<_Tp, 8 / sizeof(_Tp)>; template
using _SimdWrapper16 = _SimdWrapper<_Tp, 16 / sizeof(_Tp)>; template
using _SimdWrapper32 = _SimdWrapper<_Tp, 32 / sizeof(_Tp)>; template
using _SimdWrapper64 = _SimdWrapper<_Tp, 64 / sizeof(_Tp)>; // }}} // __is_simd_wrapper {{{ template
struct __is_simd_wrapper : false_type {}; template
struct __is_simd_wrapper<_SimdWrapper<_Tp, _Np>> : true_type {}; template
inline constexpr bool __is_simd_wrapper_v = __is_simd_wrapper<_Tp>::value; // }}} // _BitOps {{{ struct _BitOps { // _S_bit_iteration {{{ template
static void _S_bit_iteration(_Tp __mask, _Fp&& __f) { static_assert(sizeof(_ULLong) >= sizeof(_Tp)); conditional_t
__k; if constexpr (is_convertible_v<_Tp, decltype(__k)>) __k = __mask; else __k = __mask.to_ullong(); while(__k) { __f(std::__countr_zero(__k)); __k &= (__k - 1); } } //}}} }; //}}} // __increment, __decrement {{{ template
struct __increment { constexpr _Tp operator()(_Tp __a) const { return ++__a; } }; template <> struct __increment
{ template
constexpr _Tp operator()(_Tp __a) const { return ++__a; } }; template
struct __decrement { constexpr _Tp operator()(_Tp __a) const { return --__a; } }; template <> struct __decrement
{ template
constexpr _Tp operator()(_Tp __a) const { return --__a; } }; // }}} // _ValuePreserving(OrInt) {{{ template
, _To>>::value>> using _ValuePreserving = _From; template
, typename = enable_if_t
, disjunction< is_same<_DecayedFrom, _To>, is_same<_DecayedFrom, int>, conjunction
, is_unsigned<_To>>, negation<__is_narrowing_conversion<_DecayedFrom, _To>>>>::value>> using _ValuePreservingOrInt = _From; // }}} // __intrinsic_type {{{ template
> struct __intrinsic_type; template
using __intrinsic_type_t = typename __intrinsic_type<_Tp, _Size * sizeof(_Tp)>::type; template
using __intrinsic_type2_t = typename __intrinsic_type<_Tp, 2>::type; template
using __intrinsic_type4_t = typename __intrinsic_type<_Tp, 4>::type; template
using __intrinsic_type8_t = typename __intrinsic_type<_Tp, 8>::type; template
using __intrinsic_type16_t = typename __intrinsic_type<_Tp, 16>::type; template
using __intrinsic_type32_t = typename __intrinsic_type<_Tp, 32>::type; template
using __intrinsic_type64_t = typename __intrinsic_type<_Tp, 64>::type; // }}} // _BitMask {{{ template
struct _BitMask; template
struct __is_bitmask<_BitMask<_Np, _Sanitized>, void> : true_type {}; template
using _SanitizedBitMask = _BitMask<_Np, true>; template
struct _BitMask { static_assert(_Np > 0); static constexpr size_t _NBytes = __div_roundup(_Np, __CHAR_BIT__); using _Tp = conditional_t<_Np == 1, bool, make_unsigned_t<__int_with_sizeof_t
>>; static constexpr int _S_array_size = __div_roundup(_NBytes, sizeof(_Tp)); _Tp _M_bits[_S_array_size]; static constexpr int _S_unused_bits = _Np == 1 ? 0 : _S_array_size * sizeof(_Tp) * __CHAR_BIT__ - _Np; static constexpr _Tp _S_bitmask = +_Tp(~_Tp()) >> _S_unused_bits; constexpr _BitMask() noexcept = default; constexpr _BitMask(unsigned long long __x) noexcept : _M_bits{static_cast<_Tp>(__x)} {} _BitMask(bitset<_Np> __x) noexcept : _BitMask(__x.to_ullong()) {} constexpr _BitMask(const _BitMask&) noexcept = default; template
> constexpr _BitMask(const _BitMask<_Np, _RhsSanitized>& __rhs) noexcept : _BitMask(__rhs._M_sanitized()) {} constexpr operator _SimdWrapper
() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } // precondition: is sanitized constexpr _Tp _M_to_bits() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } // precondition: is sanitized constexpr unsigned long long to_ullong() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } // precondition: is sanitized constexpr unsigned long to_ulong() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } constexpr bitset<_Np> _M_to_bitset() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } constexpr decltype(auto) _M_sanitized() const noexcept { if constexpr (_Sanitized) return *this; else if constexpr (_Np == 1) return _SanitizedBitMask<_Np>(_M_bits[0]); else { _SanitizedBitMask<_Np> __r = {}; for (int __i = 0; __i < _S_array_size; ++__i) __r._M_bits[__i] = _M_bits[__i]; if constexpr (_S_unused_bits > 0) __r._M_bits[_S_array_size - 1] &= _S_bitmask; return __r; } } template
constexpr _BitMask<_Np + _Mp, _Sanitized> _M_prepend(_BitMask<_Mp, _LSanitized> __lsb) const noexcept { constexpr size_t _RN = _Np + _Mp; using _Rp = _BitMask<_RN, _Sanitized>; if constexpr (_Rp::_S_array_size == 1) { _Rp __r{{_M_bits[0]}}; __r._M_bits[0] <<= _Mp; __r._M_bits[0] |= __lsb._M_sanitized()._M_bits[0]; return __r; } else __assert_unreachable<_Rp>(); } // Return a new _BitMask with size _NewSize while dropping _DropLsb least // significant bits. If the operation implicitly produces a sanitized bitmask, // the result type will have _Sanitized set. template
constexpr auto _M_extract() const noexcept { static_assert(_Np > _DropLsb); static_assert(_DropLsb + _NewSize <= sizeof(_ULLong) * __CHAR_BIT__, "not implemented for bitmasks larger than one ullong"); if constexpr (_NewSize == 1) // must sanitize because the return _Tp is bool return _SanitizedBitMask<1>(_M_bits[0] & (_Tp(1) << _DropLsb)); else return _BitMask<_NewSize, ((_NewSize + _DropLsb == sizeof(_Tp) * __CHAR_BIT__ && _NewSize + _DropLsb <= _Np) || ((_Sanitized || _Np == sizeof(_Tp) * __CHAR_BIT__) && _NewSize + _DropLsb >= _Np))>(_M_bits[0] >> _DropLsb); } // True if all bits are set. Implicitly sanitizes if _Sanitized == false. constexpr bool all() const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().all(); else { constexpr _Tp __allbits = ~_Tp(); for (int __i = 0; __i < _S_array_size - 1; ++__i) if (_M_bits[__i] != __allbits) return false; return _M_bits[_S_array_size - 1] == _S_bitmask; } } // True if at least one bit is set. Implicitly sanitizes if _Sanitized == // false. constexpr bool any() const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().any(); else { for (int __i = 0; __i < _S_array_size - 1; ++__i) if (_M_bits[__i] != 0) return true; return _M_bits[_S_array_size - 1] != 0; } } // True if no bit is set. Implicitly sanitizes if _Sanitized == false. constexpr bool none() const noexcept { if constexpr (_Np == 1) return !_M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().none(); else { for (int __i = 0; __i < _S_array_size - 1; ++__i) if (_M_bits[__i] != 0) return false; return _M_bits[_S_array_size - 1] == 0; } } // Returns the number of set bits. Implicitly sanitizes if _Sanitized == // false. constexpr int count() const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().none(); else { int __result = __builtin_popcountll(_M_bits[0]); for (int __i = 1; __i < _S_array_size; ++__i) __result += __builtin_popcountll(_M_bits[__i]); return __result; } } // Returns the bit at offset __i as bool. constexpr bool operator[](size_t __i) const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (_S_array_size == 1) return (_M_bits[0] >> __i) & 1; else { const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); return (_M_bits[__j] >> __shift) & 1; } } template
constexpr bool operator[](_SizeConstant<__i>) const noexcept { static_assert(__i < _Np); constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); return static_cast
(_M_bits[__j] & (_Tp(1) << __shift)); } // Set the bit at offset __i to __x. constexpr void set(size_t __i, bool __x) noexcept { if constexpr (_Np == 1) _M_bits[0] = __x; else if constexpr (_S_array_size == 1) { _M_bits[0] &= ~_Tp(_Tp(1) << __i); _M_bits[0] |= _Tp(_Tp(__x) << __i); } else { const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); _M_bits[__j] &= ~_Tp(_Tp(1) << __shift); _M_bits[__j] |= _Tp(_Tp(__x) << __shift); } } template
constexpr void set(_SizeConstant<__i>, bool __x) noexcept { static_assert(__i < _Np); if constexpr (_Np == 1) _M_bits[0] = __x; else { constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); constexpr _Tp __mask = ~_Tp(_Tp(1) << __shift); _M_bits[__j] &= __mask; _M_bits[__j] |= _Tp(_Tp(__x) << __shift); } } // Inverts all bits. Sanitized input leads to sanitized output. constexpr _BitMask operator~() const noexcept { if constexpr (_Np == 1) return !_M_bits[0]; else { _BitMask __result{}; for (int __i = 0; __i < _S_array_size - 1; ++__i) __result._M_bits[__i] = ~_M_bits[__i]; if constexpr (_Sanitized) __result._M_bits[_S_array_size - 1] = _M_bits[_S_array_size - 1] ^ _S_bitmask; else __result._M_bits[_S_array_size - 1] = ~_M_bits[_S_array_size - 1]; return __result; } } constexpr _BitMask& operator^=(const _BitMask& __b) & noexcept { __execute_n_times<_S_array_size>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { _M_bits[__i] ^= __b._M_bits[__i]; }); return *this; } constexpr _BitMask& operator|=(const _BitMask& __b) & noexcept { __execute_n_times<_S_array_size>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { _M_bits[__i] |= __b._M_bits[__i]; }); return *this; } constexpr _BitMask& operator&=(const _BitMask& __b) & noexcept { __execute_n_times<_S_array_size>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { _M_bits[__i] &= __b._M_bits[__i]; }); return *this; } friend constexpr _BitMask operator^(const _BitMask& __a, const _BitMask& __b) noexcept { _BitMask __r = __a; __r ^= __b; return __r; } friend constexpr _BitMask operator|(const _BitMask& __a, const _BitMask& __b) noexcept { _BitMask __r = __a; __r |= __b; return __r; } friend constexpr _BitMask operator&(const _BitMask& __a, const _BitMask& __b) noexcept { _BitMask __r = __a; __r &= __b; return __r; } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop() const { if constexpr (_S_array_size == 0) return __builtin_constant_p(_M_bits[0]); else { for (int __i = 0; __i < _S_array_size; ++__i) if (!__builtin_constant_p(_M_bits[__i])) return false; return true; } } }; // }}} // vvv ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- vvv // __min_vector_size {{{ template
static inline constexpr int __min_vector_size = 2 * sizeof(_Tp); #if _GLIBCXX_SIMD_HAVE_NEON template <> inline constexpr int __min_vector_size
= 8; #else template <> inline constexpr int __min_vector_size
= 16; #endif // }}} // __vector_type {{{ template
struct __vector_type_n {}; // substition failure for 0-element case template
struct __vector_type_n<_Tp, 0, void> {}; // special case 1-element to be _Tp itself template
struct __vector_type_n<_Tp, 1, enable_if_t<__is_vectorizable_v<_Tp>>> { using type = _Tp; }; // else, use GNU-style builtin vector types template
struct __vector_type_n<_Tp, _Np, enable_if_t<__is_vectorizable_v<_Tp> && _Np >= 2>> { static constexpr size_t _S_Np2 = std::__bit_ceil(_Np * sizeof(_Tp)); static constexpr size_t _S_Bytes = #ifdef __i386__ // Using [[gnu::vector_size(8)]] would wreak havoc on the FPU because // those objects are passed via MMX registers and nothing ever calls EMMS. _S_Np2 == 8 ? 16 : #endif _S_Np2 < __min_vector_size<_Tp> ? __min_vector_size<_Tp> : _S_Np2; using type [[__gnu__::__vector_size__(_S_Bytes)]] = _Tp; }; template
struct __vector_type; template
struct __vector_type<_Tp, _Bytes, 0> : __vector_type_n<_Tp, _Bytes / sizeof(_Tp)> {}; template
using __vector_type_t = typename __vector_type_n<_Tp, _Size>::type; template
using __vector_type2_t = typename __vector_type<_Tp, 2>::type; template
using __vector_type4_t = typename __vector_type<_Tp, 4>::type; template
using __vector_type8_t = typename __vector_type<_Tp, 8>::type; template
using __vector_type16_t = typename __vector_type<_Tp, 16>::type; template
using __vector_type32_t = typename __vector_type<_Tp, 32>::type; template
using __vector_type64_t = typename __vector_type<_Tp, 64>::type; // }}} // __is_vector_type {{{ template
> struct __is_vector_type : false_type {}; template
struct __is_vector_type< _Tp, void_t
()[0])>, sizeof(_Tp)>::type>> : is_same<_Tp, typename __vector_type< remove_reference_t
()[0])>, sizeof(_Tp)>::type> {}; template
inline constexpr bool __is_vector_type_v = __is_vector_type<_Tp>::value; // }}} // __is_intrinsic_type {{{ #if _GLIBCXX_SIMD_HAVE_SSE_ABI template
using __is_intrinsic_type = __is_vector_type<_Tp>; #else // not SSE (x86) template
> struct __is_intrinsic_type : false_type {}; template
struct __is_intrinsic_type< _Tp, void_t
()[0])>, sizeof(_Tp)>::type>> : is_same<_Tp, typename __intrinsic_type< remove_reference_t
()[0])>, sizeof(_Tp)>::type> {}; #endif template
inline constexpr bool __is_intrinsic_type_v = __is_intrinsic_type<_Tp>::value; // }}} // _VectorTraits{{{ template
> struct _VectorTraitsImpl; template
struct _VectorTraitsImpl<_Tp, enable_if_t<__is_vector_type_v<_Tp> || __is_intrinsic_type_v<_Tp>>> { using type = _Tp; using value_type = remove_reference_t
()[0])>; static constexpr int _S_full_size = sizeof(_Tp) / sizeof(value_type); using _Wrapper = _SimdWrapper
; template
static constexpr bool _S_is = is_same_v
&& _W == _S_full_size; }; template
struct _VectorTraitsImpl<_SimdWrapper<_Tp, _Np>, void_t<__vector_type_t<_Tp, _Np>>> { using type = __vector_type_t<_Tp, _Np>; using value_type = _Tp; static constexpr int _S_full_size = sizeof(type) / sizeof(value_type); using _Wrapper = _SimdWrapper<_Tp, _Np>; static constexpr bool _S_is_partial = (_Np == _S_full_size); static constexpr int _S_partial_width = _Np; template
static constexpr bool _S_is = is_same_v
&& _W == _S_full_size; }; template
::type> using _VectorTraits = _VectorTraitsImpl<_Tp>; // }}} // __as_vector{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr auto __as_vector(_V __x) { if constexpr (__is_vector_type_v<_V>) return __x; else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value) return __data(__x)._M_data; else if constexpr (__is_vectorizable_v<_V>) return __vector_type_t<_V, 2>{__x}; else return __x._M_data; } // }}} // __as_wrapper{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr auto __as_wrapper(_V __x) { if constexpr (__is_vector_type_v<_V>) return _SimdWrapper
::value_type, (_Np > 0 ? _Np : _VectorTraits<_V>::_S_full_size)>(__x); else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value) { static_assert(_V::size() == _Np); return __data(__x); } else { static_assert(_V::_S_size == _Np); return __x; } } // }}} // __intrin_bitcast{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr _To __intrin_bitcast(_From __v) { static_assert((__is_vector_type_v<_From> || __is_intrinsic_type_v<_From>) && (__is_vector_type_v<_To> || __is_intrinsic_type_v<_To>)); if constexpr (sizeof(_To) == sizeof(_From)) return reinterpret_cast<_To>(__v); else if constexpr (sizeof(_From) > sizeof(_To)) if constexpr (sizeof(_To) >= 16) return reinterpret_cast
&>(__v); else { _To __r; __builtin_memcpy(&__r, &__v, sizeof(_To)); return __r; } #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__ else if constexpr (__have_avx && sizeof(_From) == 16 && sizeof(_To) == 32) return reinterpret_cast<_To>(__builtin_ia32_ps256_ps( reinterpret_cast<__vector_type_t
>(__v))); else if constexpr (__have_avx512f && sizeof(_From) == 16 && sizeof(_To) == 64) return reinterpret_cast<_To>(__builtin_ia32_ps512_ps( reinterpret_cast<__vector_type_t
>(__v))); else if constexpr (__have_avx512f && sizeof(_From) == 32 && sizeof(_To) == 64) return reinterpret_cast<_To>(__builtin_ia32_ps512_256ps( reinterpret_cast<__vector_type_t
>(__v))); #endif // _GLIBCXX_SIMD_X86INTRIN else if constexpr (sizeof(__v) <= 8) return reinterpret_cast<_To>( __vector_type_t<__int_for_sizeof_t<_From>, sizeof(_To) / sizeof(_From)>{ reinterpret_cast<__int_for_sizeof_t<_From>>(__v)}); else { static_assert(sizeof(_To) > sizeof(_From)); _To __r = {}; __builtin_memcpy(&__r, &__v, sizeof(_From)); return __r; } } // }}} // __vector_bitcast{{{ template
, size_t _Np = _NN == 0 ? sizeof(_From) / sizeof(_To) : _NN> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np> __vector_bitcast(_From __x) { using _R = __vector_type_t<_To, _Np>; return __intrin_bitcast<_R>(__x); } template
) / sizeof(_To) : _NN> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np> __vector_bitcast(const _SimdWrapper<_Tp, _Nx>& __x) { static_assert(_Np > 1); return __intrin_bitcast<__vector_type_t<_To, _Np>>(__x._M_data); } // }}} // __convert_x86 declarations {{{ #ifdef _GLIBCXX_SIMD_WORKAROUND_PR85048 template
> _To __convert_x86(_Tp); template
> _To __convert_x86(_Tp, _Tp); template
> _To __convert_x86(_Tp, _Tp, _Tp, _Tp); template
> _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp); template
> _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp); #endif // _GLIBCXX_SIMD_WORKAROUND_PR85048 //}}} // __bit_cast {{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr _To __bit_cast(const _From __x) { // TODO: implement with / replace by __builtin_bit_cast ASAP static_assert(sizeof(_To) == sizeof(_From)); constexpr bool __to_is_vectorizable = is_arithmetic_v<_To> || is_enum_v<_To>; constexpr bool __from_is_vectorizable = is_arithmetic_v<_From> || is_enum_v<_From>; if constexpr (__is_vector_type_v<_To> && __is_vector_type_v<_From>) return reinterpret_cast<_To>(__x); else if constexpr (__is_vector_type_v<_To> && __from_is_vectorizable) { using _FV [[__gnu__::__vector_size__(sizeof(_From))]] = _From; return reinterpret_cast<_To>(_FV{__x}); } else if constexpr (__to_is_vectorizable && __from_is_vectorizable) { using _TV [[__gnu__::__vector_size__(sizeof(_To))]] = _To; using _FV [[__gnu__::__vector_size__(sizeof(_From))]] = _From; return reinterpret_cast<_TV>(_FV{__x})[0]; } else if constexpr (__to_is_vectorizable && __is_vector_type_v<_From>) { using _TV [[__gnu__::__vector_size__(sizeof(_To))]] = _To; return reinterpret_cast<_TV>(__x)[0]; } else { _To __r; __builtin_memcpy(reinterpret_cast
(&__r), reinterpret_cast
(&__x), sizeof(_To)); return __r; } } // }}} // __to_intrin {{{ template
, typename _R = __intrinsic_type_t
> _GLIBCXX_SIMD_INTRINSIC constexpr _R __to_intrin(_Tp __x) { static_assert(sizeof(__x) <= sizeof(_R), "__to_intrin may never drop values off the end"); if constexpr (sizeof(__x) == sizeof(_R)) return reinterpret_cast<_R>(__as_vector(__x)); else { using _Up = __int_for_sizeof_t<_Tp>; return reinterpret_cast<_R>( __vector_type_t<_Up, sizeof(_R) / sizeof(_Up)>{__bit_cast<_Up>(__x)}); } } // }}} // __make_vector{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, sizeof...(_Args)> __make_vector(const _Args&... __args) { return __vector_type_t<_Tp, sizeof...(_Args)>{static_cast<_Tp>(__args)...}; } // }}} // __vector_broadcast{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __vector_broadcast_impl(_Tp __x, index_sequence<_I...>) { return __vector_type_t<_Tp, _Np>{((void)_I, __x)...}; } template
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __vector_broadcast(_Tp __x) { return __vector_broadcast_impl<_Np, _Tp>(__x, make_index_sequence<_Np>()); } // }}} // __generate_vector{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __generate_vector_impl(_Gp&& __gen, index_sequence<_I...>) { return __vector_type_t<_Tp, _Np>{ static_cast<_Tp>(__gen(_SizeConstant<_I>()))...}; } template
, typename _Gp> _GLIBCXX_SIMD_INTRINSIC constexpr _V __generate_vector(_Gp&& __gen) { if constexpr (__is_vector_type_v<_V>) return __generate_vector_impl
( static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_full_size>()); else return __generate_vector_impl
( static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_partial_width>()); } template
_GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __generate_vector(_Gp&& __gen) { return __generate_vector_impl<_Tp, _Np>(static_cast<_Gp&&>(__gen), make_index_sequence<_Np>()); } // }}} // __xor{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr _TW __xor(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>::value_type; if constexpr (is_floating_point_v<_Tp>) { using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a) ^ __vector_bitcast<_Ip>(__b)); } else if constexpr (__is_vector_type_v<_TW>) return __a ^ __b; else return __a._M_data ^ __b._M_data; } else return __a ^ __b; } // }}} // __or{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr _TW __or(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>::value_type; if constexpr (is_floating_point_v<_Tp>) { using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a) | __vector_bitcast<_Ip>(__b)); } else if constexpr (__is_vector_type_v<_TW>) return __a | __b; else return __a._M_data | __b._M_data; } else return __a | __b; } // }}} // __and{{{ template
_GLIBCXX_SIMD_INTRINSIC constexpr _TW __and(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>::value_type; if constexpr (is_floating_point_v<_Tp>) { using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a) & __vector_bitcast<_Ip>(__b)); } else if constexpr (__is_vector_type_v<_TW>) return __a & __b; else return __a._M_data & __b._M_data; } else return __a & __b; } // }}} // __andnot{{{ #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__ static constexpr struct { _GLIBCXX_SIMD_INTRINSIC __v4sf operator()(__v4sf __a, __v4sf __b) const noexcept { return __builtin_ia32_andnps(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v2df operator()(__v2df __a, __v2df __b) const noexcept { return __builtin_ia32_andnpd(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v2di operator()(__v2di __a, __v2di __b) const noexcept { return __builtin_ia32_pandn128(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v8sf operator()(__v8sf __a, __v8sf __b) const noexcept { return __builtin_ia32_andnps256(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v4df operator()(__v4df __a, __v4df __b) const noexcept { return __builtin_ia32_andnpd256(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v4di operator()(__v4di __a, __v4di __b) const noexcept { if constexpr (__have_avx2) return __builtin_ia32_andnotsi256(__a, __b); else return reinterpret_cast<__v4di>( __builtin_ia32_andnpd256(reinterpret_cast<__v4df>(__a), reinterpret_cast<__v4df>(__b))); } _GLIBCXX_SIMD_INTRINSIC __v16sf operator()(__v16sf __a, __v16sf __b) const noexcept { if constexpr (__have_avx512dq) return _mm512_andnot_ps(__a, __b); else return reinterpret_cast<__v16sf>( _mm512_andnot_si512(reinterpret_cast<__v8di>(__a), reinterpret_cast<__v8di>(__b))); } _GLIBCXX_SIMD_INTRINSIC __v8df operator()(__v8df __a, __v8df __b) const noexcept { if constexpr (__have_avx512dq) return _mm512_andnot_pd(__a, __b); else return reinterpret_cast<__v8df>( _mm512_andnot_si512(reinterpret_cast<__v8di>(__a), reinterpret_cast<__v8di>(__b))); } _GLIBCXX_SIMD_INTRINSIC __v8di operator()(__v8di __a, __v8di __b) const noexcept { return _mm512_andnot_si512(__a, __b); } } _S_x86_andnot; #endif // _GLIBCXX_SIMD_X86INTRIN && !__clang__ template
_GLIBCXX_SIMD_INTRINSIC constexpr _TW __andnot(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _TVT = conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>; using _Tp = typename _TVT::value_type; #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__ if constexpr (sizeof(_TW) >= 16) { const auto __ai = __to_intrin(__a); const auto __bi = __to_intrin(__b); if (!__builtin_is_constant_evaluated() && !(__builtin_constant_p(__ai) && __builtin_constant_p(__bi))) { const auto __r = _S_x86_andnot(__ai, __bi); if constexpr (is_convertible_v
) return __r; else return reinterpret_cast
(__r); } } #endif // _GLIBCXX_SIMD_X86INTRIN using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(~__vector_bitcast<_Ip>(__a) & __vector_bitcast<_Ip>(__b)); } else return ~__a & __b; } // }}} // __not{{{ template
> _GLIBCXX_SIMD_INTRINSIC constexpr _Tp __not(_Tp __a) noexcept { if constexpr (is_floating_point_v
) return reinterpret_cast
( ~__vector_bitcast
(__a)); else return ~__a; } // }}} // __concat{{{ template
, typename _R = __vector_type_t
> constexpr _R __concat(_Tp a_, _Tp b_) { #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1 using _W = conditional_t
, double, conditional_t<(sizeof(_Tp) >= 2 * sizeof(long long)), long long, typename _TVT::value_type>>; constexpr int input_width = sizeof(_Tp) / sizeof(_W); const auto __a = __vector_bitcast<_W>(a_); const auto __b = __vector_bitcast<_W>(b_); using _Up = __vector_type_t<_W, sizeof(_R) / sizeof(_W)>; #else constexpr int input_width = _TVT::_S_full_size; const _Tp& __a = a_; const _Tp& __b = b_; using _Up = _R; #endif if constexpr (input_width == 2) return reinterpret_cast<_R>(_Up{__a[0], __a[1], __b[0], __b[1]}); else if constexpr (input_width == 4) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __b[0], __b[1], __b[2], __b[3]}); else if constexpr (input_width == 8) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7], __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7]}); else if constexpr (input_width == 16) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13], __a[14], __a[15], __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11], __b[12], __b[13], __b[14], __b[15]}); else if constexpr (input_width == 32) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13], __a[14], __a[15], __a[16], __a[17], __a[18], __a[19], __a[20], __a[21], __a[22], __a[23], __a[24], __a[25], __a[26], __a[27], __a[28], __a[29], __a[30], __a[31], __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11], __b[12], __b[13], __b[14], __b[15], __b[16], __b[17], __b[18], __b[19], __b[20], __b[21], __b[22], __b[23], __b[24], __b[25], __b[26], __b[27], __b[28], __b[29], __b[30], __b[31]}); } // }}} // __zero_extend {{{ template
> struct _ZeroExtendProxy { using value_type = typename _TVT::value_type; static constexpr size_t _Np = _TVT::_S_full_size; const _Tp __x; template
, typename = enable_if_t
>> _GLIBCXX_SIMD_INTRINSIC operator _To() const { constexpr size_t _ToN = _ToVT::_S_full_size; if constexpr (_ToN == _Np) return __x; else if constexpr (_ToN == 2 * _Np) { #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3 if constexpr (__have_avx && _TVT::template _S_is
) return __vector_bitcast
( _mm256_insertf128_ps(__m256(), __x, 0)); else if constexpr (__have_avx && _TVT::template _S_is
) return __vector_bitcast
( _mm256_insertf128_pd(__m256d(), __x, 0)); else if constexpr (__have_avx2 && _Np * sizeof(value_type) == 16) return __vector_bitcast
( _mm256_insertf128_si256(__m256i(), __to_intrin(__x), 0)); else if constexpr (__have_avx512f && _TVT::template _S_is
) { if constexpr (__have_avx512dq) return __vector_bitcast
( _mm512_insertf32x8(__m512(), __x, 0)); else return reinterpret_cast<__m512>( _mm512_insertf64x4(__m512d(), reinterpret_cast<__m256d>(__x), 0)); } else if constexpr (__have_avx512f && _TVT::template _S_is
) return __vector_bitcast
( _mm512_insertf64x4(__m512d(), __x, 0)); else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 32) return __vector_bitcast
( _mm512_inserti64x4(__m512i(), __to_intrin(__x), 0)); #endif return __concat(__x, _Tp()); } else if constexpr (_ToN == 4 * _Np) { #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3 if constexpr (__have_avx512dq && _TVT::template _S_is
) { return __vector_bitcast
( _mm512_insertf64x2(__m512d(), __x, 0)); } else if constexpr (__have_avx512f && is_floating_point_v
) { return __vector_bitcast