Return to the PCRE2 index page.
This page is part of the PCRE2 HTML documentation. It was generated automatically from the original man page. If there is any nonsense in it, please consult the man page, in case the conversion went wrong.
#include <pcre2posix.h>
int pcre2_regcomp(regex_t *preg, const char *pattern, int cflags); int pcre2_regexec(const regex_t *preg, const char *string, size_t nmatch, regmatch_t pmatch[], int eflags); size_t pcre2_regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size); void pcre2_regfree(regex_t *preg);
This set of functions provides a POSIX-style API for the PCRE2 regular expression 8-bit library. There are no POSIX-style wrappers for PCRE2's 16-bit and 32-bit libraries. See the pcre2api documentation for a description of PCRE2's native API, which contains much additional functionality.
The functions described here are wrapper functions that ultimately call the PCRE2 native API. Their prototypes are defined in the pcre2posix.h header file, and they all have unique names starting with pcre2_. However, the pcre2posix.h header also contains macro definitions that convert the standard POSIX names such regcomp() into pcre2_regcomp() etc. This means that a program can use the usual POSIX names without running the risk of accidentally linking with POSIX functions from a different library.
On Unix-like systems the PCRE2 POSIX library is called libpcre2-posix, so can be accessed by adding -lpcre2-posix to the command for linking an application. Because the POSIX functions call the native ones, it is also necessary to add -lpcre2-8.
Although they were not defined as protypes in pcre2posix.h, releases 10.33 to 10.36 of the library contained functions with the POSIX names regcomp() etc. These simply passed their arguments to the PCRE2 functions. These functions were provided for backwards compatibility with earlier versions of PCRE2, which had only POSIX names. However, this has proved troublesome in situations where a program links with several libraries, some of which use PCRE2's POSIX interface while others use the real POSIX functions. For this reason, the POSIX names have been removed since release 10.37.
Calling the header file pcre2posix.h avoids any conflict with other POSIX libraries. It can, of course, be renamed or aliased as regex.h, which is the "correct" name, if there is no clash. It provides two structure types, regex_t for compiled internal forms, and regmatch_t for returning captured substrings. It also defines some constants whose names start with "REG_"; these are used for setting options and identifying error codes.
Those POSIX option bits that can reasonably be mapped to PCRE2 native options have been implemented. In addition, the option REG_EXTENDED is defined with the value zero. This has no effect, but since programs that are written to the POSIX interface often use it, this makes it easier to slot in PCRE2 as a replacement library. Other POSIX options are not even defined.
There are also some options that are not defined by POSIX. These have been added at the request of users who want to make use of certain PCRE2-specific features via the POSIX calling interface or to add BSD or GNU functionality.
When PCRE2 is called via these functions, it is only the API that is POSIX-like in style. The syntax and semantics of the regular expressions themselves are still those of Perl, subject to the setting of various PCRE2 options, as described below. "POSIX-like in style" means that the API approximates to the POSIX definition; it is not fully POSIX-compatible, and in multi-unit encoding domains it is probably even less compatible.
The descriptions below use the actual names of the functions, but, as described above, the standard POSIX names (without the pcre2_ prefix) may also be used.
The function pcre2_regcomp() is called to compile a pattern into an internal form. By default, the pattern is a C string terminated by a binary zero (but see REG_PEND below). The preg argument is a pointer to a regex_t structure that is used as a base for storing information about the compiled regular expression. (It is also used for input when REG_PEND is set.)
The argument cflags is either zero, or contains one or more of the bits defined by the following macros:
REG_DOTALL
REG_ICASE
REG_NEWLINE
REG_NOSPEC
REG_NOSUB
REG_PEND
REG_UCP
REG_UNGREEDY
REG_UTF
In the absence of these flags, no options are passed to the native function. This means the the regex is compiled with PCRE2 default semantics. In particular, the way it handles newline characters in the subject string is the Perl way, not the POSIX way. Note that setting PCRE2_MULTILINE has only some of the effects specified for REG_NEWLINE. It does not affect the way newlines are matched by the dot metacharacter (they are not) or by a negative class such as [^a] (they are).
The yield of pcre2_regcomp() is zero on success, and non-zero otherwise. The preg structure is filled in on success, and one other member of the structure (as well as re_endp) is public: re_nsub contains the number of capturing subpatterns in the regular expression. Various error codes are defined in the header file.
NOTE: If the yield of pcre2_regcomp() is non-zero, you must not attempt to use the contents of the preg structure. If, for example, you pass it to pcre2_regexec(), the result is undefined and your program is likely to crash.
This area is not simple, because POSIX and Perl take different views of things. It is not possible to get PCRE2 to obey POSIX semantics, but then PCRE2 was never intended to be a POSIX engine. The following table lists the different possibilities for matching newline characters in Perl and PCRE2:
Default Change with . matches newline no PCRE2_DOTALL newline matches [^a] yes not changeable $ matches \n at end yes PCRE2_DOLLAR_ENDONLY $ matches \n in middle no PCRE2_MULTILINE ^ matches \n in middle no PCRE2_MULTILINE
Default Change with . matches newline yes REG_NEWLINE newline matches [^a] yes REG_NEWLINE $ matches \n at end no REG_NEWLINE $ matches \n in middle no REG_NEWLINE ^ matches \n in middle no REG_NEWLINE
Default POSIX newline handling can be obtained by setting PCRE2_DOTALL and PCRE2_DOLLAR_ENDONLY when calling pcre2_compile() directly, but there is no way to make PCRE2 behave exactly as for the REG_NEWLINE action. When using the POSIX API, passing REG_NEWLINE to PCRE2's pcre2_regcomp() function causes PCRE2_MULTILINE to be passed to pcre2_compile(), and REG_DOTALL passes PCRE2_DOTALL. There is no way to pass PCRE2_DOLLAR_ENDONLY.
The function pcre2_regexec() is called to match a compiled pattern preg against a given string, which is by default terminated by a zero byte (but see REG_STARTEND below), subject to the options in eflags. These can be:
REG_NOTBOL
REG_NOTEMPTY
REG_NOTEOL
REG_STARTEND
Whatever the value of pmatch[0].rm_so, the offsets of the matched string and any captured substrings are still given relative to the start of string itself. (Before PCRE2 release 10.30 these were given relative to string + pmatch[0].rm_so, but this differs from other implementations.)
This is a BSD extension, compatible with but not specified by IEEE Standard 1003.2 (POSIX.2), and should be used with caution in software intended to be portable to other systems. Note that a non-zero rm_so does not imply REG_NOTBOL; REG_STARTEND affects only the location and length of the string, not how it is matched. Setting REG_STARTEND and passing pmatch as NULL are mutually exclusive; the error REG_INVARG is returned.
If the pattern was compiled with the REG_NOSUB flag, no data about any matched strings is returned. The nmatch and pmatch arguments of pcre2_regexec() are ignored (except possibly as input for REG_STARTEND).
The value of nmatch may be zero, and the value pmatch may be NULL (unless REG_STARTEND is set); in both these cases no data about any matched strings is returned.
Otherwise, the portion of the string that was matched, and also any captured substrings, are returned via the pmatch argument, which points to an array of nmatch structures of type regmatch_t, containing the members rm_so and rm_eo. These contain the byte offset to the first character of each substring and the offset to the first character after the end of each substring, respectively. The 0th element of the vector relates to the entire portion of string that was matched; subsequent elements relate to the capturing subpatterns of the regular expression. Unused entries in the array have both structure members set to -1.
A successful match yields a zero return; various error codes are defined in the header file, of which REG_NOMATCH is the "expected" failure code.
The pcre2_regerror() function maps a non-zero errorcode from either pcre2_regcomp() or pcre2_regexec() to a printable message. If preg is not NULL, the error should have arisen from the use of that structure. A message terminated by a binary zero is placed in errbuf. If the buffer is too short, only the first errbuf_size - 1 characters of the error message are used. The yield of the function is the size of buffer needed to hold the whole message, including the terminating zero. This value is greater than errbuf_size if the message was truncated.
Compiling a regular expression causes memory to be allocated and associated with the preg structure. The function pcre2_regfree() frees all such memory, after which preg may no longer be used as a compiled expression.
Philip Hazel University Computing Service Cambridge, England.
Last updated: 26 April 2021 Copyright © 1997-2021 University of Cambridge.