`. Then Node.js will not bother
looking for missing dependencies in `/usr/node_modules` or `/node_modules`.
In order to make modules available to the Node.js REPL, it might be useful to
also add the `/usr/lib/node_modules` folder to the `$NODE_PATH` environment
variable. Since the module lookups using `node_modules` folders are all
relative, and based on the real path of the files making the calls to
`require()`, the packages themselves can be anywhere.
## The `.mjs` extension
Due to the synchronous nature of `require()`, it is not possible to use it to
load ECMAScript module files. Attempting to do so will throw a
[`ERR_REQUIRE_ESM`][] error. Use [`import()`][] instead.
The `.mjs` extension is reserved for [ECMAScript Modules][] which cannot be
loaded via `require()`. See [Determining module system][] section for more info
regarding which files are parsed as ECMAScript modules.
## All together
To get the exact filename that will be loaded when `require()` is called, use
the `require.resolve()` function.
Putting together all of the above, here is the high-level algorithm
in pseudocode of what `require()` does:
require(X) from module at path Y
1. If X is a core module,
a. return the core module
b. STOP
2. If X begins with '/'
a. set Y to be the filesystem root
3. If X begins with './' or '/' or '../'
a. LOAD_AS_FILE(Y + X)
b. LOAD_AS_DIRECTORY(Y + X)
c. THROW "not found"
4. If X begins with '#'
a. LOAD_PACKAGE_IMPORTS(X, dirname(Y))
5. LOAD_PACKAGE_SELF(X, dirname(Y))
6. LOAD_NODE_MODULES(X, dirname(Y))
7. THROW "not found"
LOAD_AS_FILE(X)
1. If X is a file, load X as its file extension format. STOP
2. If X.js is a file, load X.js as JavaScript text. STOP
3. If X.json is a file, parse X.json to a JavaScript Object. STOP
4. If X.node is a file, load X.node as binary addon. STOP
LOAD_INDEX(X)
1. If X/index.js is a file, load X/index.js as JavaScript text. STOP
2. If X/index.json is a file, parse X/index.json to a JavaScript object. STOP
3. If X/index.node is a file, load X/index.node as binary addon. STOP
LOAD_AS_DIRECTORY(X)
1. If X/package.json is a file,
a. Parse X/package.json, and look for "main" field.
b. If "main" is a falsy value, GOTO 2.
c. let M = X + (json main field)
d. LOAD_AS_FILE(M)
e. LOAD_INDEX(M)
f. LOAD_INDEX(X) DEPRECATED
g. THROW "not found"
2. LOAD_INDEX(X)
LOAD_NODE_MODULES(X, START)
1. let DIRS = NODE_MODULES_PATHS(START)
2. for each DIR in DIRS:
a. LOAD_PACKAGE_EXPORTS(X, DIR)
b. LOAD_AS_FILE(DIR/X)
c. LOAD_AS_DIRECTORY(DIR/X)
NODE_MODULES_PATHS(START)
1. let PARTS = path split(START)
2. let I = count of PARTS - 1
3. let DIRS = []
4. while I >= 0,
a. if PARTS[I] = "node_modules" CONTINUE
b. DIR = path join(PARTS[0 .. I] + "node_modules")
c. DIRS = DIR + DIRS
d. let I = I - 1
5. return DIRS + GLOBAL_FOLDERS
LOAD_PACKAGE_IMPORTS(X, DIR)
1. Find the closest package scope SCOPE to DIR.
2. If no scope was found, return.
3. If the SCOPE/package.json "imports" is null or undefined, return.
4. let MATCH = PACKAGE_IMPORTS_RESOLVE(X, pathToFileURL(SCOPE),
["node", "require"]) defined in the ESM resolver.
5. RESOLVE_ESM_MATCH(MATCH).
LOAD_PACKAGE_EXPORTS(X, DIR)
1. Try to interpret X as a combination of NAME and SUBPATH where the name
may have a @scope/ prefix and the subpath begins with a slash (`/`).
2. If X does not match this pattern or DIR/NAME/package.json is not a file,
return.
3. Parse DIR/NAME/package.json, and look for "exports" field.
4. If "exports" is null or undefined, return.
5. let MATCH = PACKAGE_EXPORTS_RESOLVE(pathToFileURL(DIR/NAME), "." + SUBPATH,
`package.json` "exports", ["node", "require"]) defined in the ESM resolver.
6. RESOLVE_ESM_MATCH(MATCH)
LOAD_PACKAGE_SELF(X, DIR)
1. Find the closest package scope SCOPE to DIR.
2. If no scope was found, return.
3. If the SCOPE/package.json "exports" is null or undefined, return.
4. If the SCOPE/package.json "name" is not the first segment of X, return.
5. let MATCH = PACKAGE_EXPORTS_RESOLVE(pathToFileURL(SCOPE),
"." + X.slice("name".length), `package.json` "exports", ["node", "require"])
defined in the ESM resolver.
6. RESOLVE_ESM_MATCH(MATCH)
RESOLVE_ESM_MATCH(MATCH)
1. let { RESOLVED, EXACT } = MATCH
2. let RESOLVED_PATH = fileURLToPath(RESOLVED)
3. If EXACT is true,
a. If the file at RESOLVED_PATH exists, load RESOLVED_PATH as its extension
format. STOP
4. Otherwise, if EXACT is false,
a. LOAD_AS_FILE(RESOLVED_PATH)
b. LOAD_AS_DIRECTORY(RESOLVED_PATH)
5. THROW "not found"
## Caching
Modules are cached after the first time they are loaded. This means (among other
things) that every call to `require('foo')` will get exactly the same object
returned, if it would resolve to the same file.
Provided `require.cache` is not modified, multiple calls to `require('foo')`
will not cause the module code to be executed multiple times. This is an
important feature. With it, "partially done" objects can be returned, thus
allowing transitive dependencies to be loaded even when they would cause cycles.
To have a module execute code multiple times, export a function, and call that
function.
### Module caching caveats
Modules are cached based on their resolved filename. Since modules may resolve
to a different filename based on the location of the calling module (loading
from `node_modules` folders), it is not a _guarantee_ that `require('foo')` will
always return the exact same object, if it would resolve to different files.
Additionally, on case-insensitive file systems or operating systems, different
resolved filenames can point to the same file, but the cache will still treat
them as different modules and will reload the file multiple times. For example,
`require('./foo')` and `require('./FOO')` return two different objects,
irrespective of whether or not `./foo` and `./FOO` are the same file.
## Core modules
Node.js has several modules compiled into the binary. These modules are
described in greater detail elsewhere in this documentation.
The core modules are defined within the Node.js source and are located in the
`lib/` folder.
Core modules can be identified using the `node:` prefix, in which case
it bypasses the `require` cache. For instance, `require('node:http')` will
always return the built in HTTP module, even if there is `require.cache` entry
by that name.
Some core modules are always preferentially loaded if their identifier is
passed to `require()`. For instance, `require('http')` will always
return the built-in HTTP module, even if there is a file by that name. The list
of core modules that can be loaded without using the `node:` prefix is exposed
as [`module.builtinModules`][].
## Cycles
When there are circular `require()` calls, a module might not have finished
executing when it is returned.
Consider this situation:
`a.js`:
```js
console.log('a starting');
exports.done = false;
const b = require('./b.js');
console.log('in a, b.done = %j', b.done);
exports.done = true;
console.log('a done');
```
`b.js`:
```js
console.log('b starting');
exports.done = false;
const a = require('./a.js');
console.log('in b, a.done = %j', a.done);
exports.done = true;
console.log('b done');
```
`main.js`:
```js
console.log('main starting');
const a = require('./a.js');
const b = require('./b.js');
console.log('in main, a.done = %j, b.done = %j', a.done, b.done);
```
When `main.js` loads `a.js`, then `a.js` in turn loads `b.js`. At that
point, `b.js` tries to load `a.js`. In order to prevent an infinite
loop, an **unfinished copy** of the `a.js` exports object is returned to the
`b.js` module. `b.js` then finishes loading, and its `exports` object is
provided to the `a.js` module.
By the time `main.js` has loaded both modules, they're both finished.
The output of this program would thus be:
```console
$ node main.js
main starting
a starting
b starting
in b, a.done = false
b done
in a, b.done = true
a done
in main, a.done = true, b.done = true
```
Careful planning is required to allow cyclic module dependencies to work
correctly within an application.
## File modules
If the exact filename is not found, then Node.js will attempt to load the
required filename with the added extensions: `.js`, `.json`, and finally
`.node`. When loading a file that has a different extension (e.g. `.cjs`), its
full name must be passed to `require()`, including its file extension (e.g.
`require('./file.cjs')`).
`.json` files are parsed as JSON text files, `.node` files are interpreted as
compiled addon modules loaded with `process.dlopen()`. Files using any other
extension (or no extension at all) are parsed as JavaScript text files. Refer to
the [Determining module system][] section to understand what parse goal will be
used.
A required module prefixed with `'/'` is an absolute path to the file. For
example, `require('/home/marco/foo.js')` will load the file at
`/home/marco/foo.js`.
A required module prefixed with `'./'` is relative to the file calling
`require()`. That is, `circle.js` must be in the same directory as `foo.js` for
`require('./circle')` to find it.
Without a leading `'/'`, `'./'`, or `'../'` to indicate a file, the module must
either be a core module or is loaded from a `node_modules` folder.
If the given path does not exist, `require()` will throw a
[`MODULE_NOT_FOUND`][] error.
## Folders as modules
> Stability: 3 - Legacy: Use [subpath exports][] or [subpath imports][] instead.
There are three ways in which a folder may be passed to `require()` as
an argument.
The first is to create a [`package.json`][] file in the root of the folder,
which specifies a `main` module. An example [`package.json`][] file might
look like this:
```json
{ "name" : "some-library",
"main" : "./lib/some-library.js" }
```
If this was in a folder at `./some-library`, then
`require('./some-library')` would attempt to load
`./some-library/lib/some-library.js`.
If there is no [`package.json`][] file present in the directory, or if the
[`"main"`][] entry is missing or cannot be resolved, then Node.js
will attempt to load an `index.js` or `index.node` file out of that
directory. For example, if there was no [`package.json`][] file in the previous
example, then `require('./some-library')` would attempt to load:
* `./some-library/index.js`
* `./some-library/index.node`
If these attempts fail, then Node.js will report the entire module as missing
with the default error:
```console
Error: Cannot find module 'some-library'
```
In all three above cases, an `import('./some-library')` call would result in a
[`ERR_UNSUPPORTED_DIR_IMPORT`][] error. Using package [subpath exports][] or
[subpath imports][] can provide the same containment organization benefits as
folders as modules, and work for both `require` and `import`.
## Loading from `node_modules` folders
If the module identifier passed to `require()` is not a
[core](#core-modules) module, and does not begin with `'/'`, `'../'`, or
`'./'`, then Node.js starts at the directory of the current module, and
adds `/node_modules`, and attempts to load the module from that location.
Node.js will not append `node_modules` to a path already ending in
`node_modules`.
If it is not found there, then it moves to the parent directory, and so
on, until the root of the file system is reached.
For example, if the file at `'/home/ry/projects/foo.js'` called
`require('bar.js')`, then Node.js would look in the following locations, in
this order:
* `/home/ry/projects/node_modules/bar.js`
* `/home/ry/node_modules/bar.js`
* `/home/node_modules/bar.js`
* `/node_modules/bar.js`
This allows programs to localize their dependencies, so that they do not
clash.
It is possible to require specific files or sub modules distributed with a
module by including a path suffix after the module name. For instance
`require('example-module/path/to/file')` would resolve `path/to/file`
relative to where `example-module` is located. The suffixed path follows the
same module resolution semantics.
## Loading from the global folders
If the `NODE_PATH` environment variable is set to a colon-delimited list
of absolute paths, then Node.js will search those paths for modules if they
are not found elsewhere.
On Windows, `NODE_PATH` is delimited by semicolons (`;`) instead of colons.
`NODE_PATH` was originally created to support loading modules from
varying paths before the current [module resolution][] algorithm was defined.
`NODE_PATH` is still supported, but is less necessary now that the Node.js
ecosystem has settled on a convention for locating dependent modules.
Sometimes deployments that rely on `NODE_PATH` show surprising behavior
when people are unaware that `NODE_PATH` must be set. Sometimes a
module's dependencies change, causing a different version (or even a
different module) to be loaded as the `NODE_PATH` is searched.
Additionally, Node.js will search in the following list of GLOBAL\_FOLDERS:
* 1: `$HOME/.node_modules`
* 2: `$HOME/.node_libraries`
* 3: `$PREFIX/lib/node`
Where `$HOME` is the user's home directory, and `$PREFIX` is the Node.js
configured `node_prefix`.
These are mostly for historic reasons.
It is strongly encouraged to place dependencies in the local `node_modules`
folder. These will be loaded faster, and more reliably.
## The module wrapper
Before a module's code is executed, Node.js will wrap it with a function
wrapper that looks like the following:
```js
(function(exports, require, module, __filename, __dirname) {
// Module code actually lives in here
});
```
By doing this, Node.js achieves a few things:
* It keeps top-level variables (defined with `var`, `const`, or `let`) scoped to
the module rather than the global object.
* It helps to provide some global-looking variables that are actually specific
to the module, such as:
* The `module` and `exports` objects that the implementor can use to export
values from the module.
* The convenience variables `__filename` and `__dirname`, containing the
module's absolute filename and directory path.
## The module scope
### `__dirname`
* {string}
The directory name of the current module. This is the same as the
[`path.dirname()`][] of the [`__filename`][].
Example: running `node example.js` from `/Users/mjr`
```js
console.log(__dirname);
// Prints: /Users/mjr
console.log(path.dirname(__filename));
// Prints: /Users/mjr
```
### `__filename`
* {string}
The file name of the current module. This is the current module file's absolute
path with symlinks resolved.
For a main program this is not necessarily the same as the file name used in the
command line.
See [`__dirname`][] for the directory name of the current module.
Examples:
Running `node example.js` from `/Users/mjr`
```js
console.log(__filename);
// Prints: /Users/mjr/example.js
console.log(__dirname);
// Prints: /Users/mjr
```
Given two modules: `a` and `b`, where `b` is a dependency of
`a` and there is a directory structure of:
* `/Users/mjr/app/a.js`
* `/Users/mjr/app/node_modules/b/b.js`
References to `__filename` within `b.js` will return
`/Users/mjr/app/node_modules/b/b.js` while references to `__filename` within
`a.js` will return `/Users/mjr/app/a.js`.
### `exports`
* {Object}
A reference to the `module.exports` that is shorter to type.
See the section about the [exports shortcut][] for details on when to use
`exports` and when to use `module.exports`.
### `module`
* {module}
A reference to the current module, see the section about the
[`module` object][]. In particular, `module.exports` is used for defining what
a module exports and makes available through `require()`.
### `require(id)`
* `id` {string} module name or path
* Returns: {any} exported module content
Used to import modules, `JSON`, and local files. Modules can be imported
from `node_modules`. Local modules and JSON files can be imported using
a relative path (e.g. `./`, `./foo`, `./bar/baz`, `../foo`) that will be
resolved against the directory named by [`__dirname`][] (if defined) or
the current working directory. The relative paths of POSIX style are resolved
in an OS independent fashion, meaning that the examples above will work on
Windows in the same way they would on Unix systems.
```js
// Importing a local module with a path relative to the `__dirname` or current
// working directory. (On Windows, this would resolve to .\path\myLocalModule.)
const myLocalModule = require('./path/myLocalModule');
// Importing a JSON file:
const jsonData = require('./path/filename.json');
// Importing a module from node_modules or Node.js built-in module:
const crypto = require('node:crypto');
```
#### `require.cache`
* {Object}
Modules are cached in this object when they are required. By deleting a key
value from this object, the next `require` will reload the module.
This does not apply to [native addons][], for which reloading will result in an
error.
Adding or replacing entries is also possible. This cache is checked before
built-in modules and if a name matching a built-in module is added to the cache,
only `node:`-prefixed require calls are going to receive the built-in module.
Use with care!
```js
const assert = require('node:assert');
const realFs = require('node:fs');
const fakeFs = {};
require.cache.fs = { exports: fakeFs };
assert.strictEqual(require('node:fs'), fakeFs);
assert.strictEqual(require('node:fs'), realFs);
```
#### `require.extensions`
> Stability: 0 - Deprecated
* {Object}
Instruct `require` on how to handle certain file extensions.
Process files with the extension `.sjs` as `.js`:
```js
require.extensions['.sjs'] = require.extensions['.js'];
```
**Deprecated.** In the past, this list has been used to load non-JavaScript
modules into Node.js by compiling them on-demand. However, in practice, there
are much better ways to do this, such as loading modules via some other Node.js
program, or compiling them to JavaScript ahead of time.
Avoid using `require.extensions`. Use could cause subtle bugs and resolving the
extensions gets slower with each registered extension.
#### `require.main`
* {module | undefined}
The `Module` object representing the entry script loaded when the Node.js
process launched, or `undefined` if the entry point of the program is not a
CommonJS module.
See ["Accessing the main module"](#accessing-the-main-module).
In `entry.js` script:
```js
console.log(require.main);
```
```bash
node entry.js
```
```js
Module {
id: '.',
path: '/absolute/path/to',
exports: {},
filename: '/absolute/path/to/entry.js',
loaded: false,
children: [],
paths:
[ '/absolute/path/to/node_modules',
'/absolute/path/node_modules',
'/absolute/node_modules',
'/node_modules' ] }
```
#### `require.resolve(request[, options])`
* `request` {string} The module path to resolve.
* `options` {Object}
* `paths` {string\[]} Paths to resolve module location from. If present, these
paths are used instead of the default resolution paths, with the exception
of [GLOBAL\_FOLDERS][GLOBAL_FOLDERS] like `$HOME/.node_modules`, which are
always included. Each of these paths is used as a starting point for
the module resolution algorithm, meaning that the `node_modules` hierarchy
is checked from this location.
* Returns: {string}
Use the internal `require()` machinery to look up the location of a module,
but rather than loading the module, just return the resolved filename.
If the module can not be found, a `MODULE_NOT_FOUND` error is thrown.
##### `require.resolve.paths(request)`
* `request` {string} The module path whose lookup paths are being retrieved.
* Returns: {string\[]|null}
Returns an array containing the paths searched during resolution of `request` or
`null` if the `request` string references a core module, for example `http` or
`fs`.
## The `module` object
* {Object}
In each module, the `module` free variable is a reference to the object
representing the current module. For convenience, `module.exports` is
also accessible via the `exports` module-global. `module` is not actually
a global but rather local to each module.
### `module.children`
* {module\[]}
The module objects required for the first time by this one.
### `module.exports`
* {Object}
The `module.exports` object is created by the `Module` system. Sometimes this is
not acceptable; many want their module to be an instance of some class. To do
this, assign the desired export object to `module.exports`. Assigning
the desired object to `exports` will simply rebind the local `exports` variable,
which is probably not what is desired.
For example, suppose we were making a module called `a.js`:
```js
const EventEmitter = require('node:events');
module.exports = new EventEmitter();
// Do some work, and after some time emit
// the 'ready' event from the module itself.
setTimeout(() => {
module.exports.emit('ready');
}, 1000);
```
Then in another file we could do:
```js
const a = require('./a');
a.on('ready', () => {
console.log('module "a" is ready');
});
```
Assignment to `module.exports` must be done immediately. It cannot be
done in any callbacks. This does not work:
`x.js`:
```js
setTimeout(() => {
module.exports = { a: 'hello' };
}, 0);
```
`y.js`:
```js
const x = require('./x');
console.log(x.a);
```
#### `exports` shortcut
The `exports` variable is available within a module's file-level scope, and is
assigned the value of `module.exports` before the module is evaluated.
It allows a shortcut, so that `module.exports.f = ...` can be written more
succinctly as `exports.f = ...`. However, be aware that like any variable, if a
new value is assigned to `exports`, it is no longer bound to `module.exports`:
```js
module.exports.hello = true; // Exported from require of module
exports = { hello: false }; // Not exported, only available in the module
```
When the `module.exports` property is being completely replaced by a new
object, it is common to also reassign `exports`:
```js
module.exports = exports = function Constructor() {
// ... etc.
};
```
To illustrate the behavior, imagine this hypothetical implementation of
`require()`, which is quite similar to what is actually done by `require()`:
```js
function require(/* ... */) {
const module = { exports: {} };
((module, exports) => {
// Module code here. In this example, define a function.
function someFunc() {}
exports = someFunc;
// At this point, exports is no longer a shortcut to module.exports, and
// this module will still export an empty default object.
module.exports = someFunc;
// At this point, the module will now export someFunc, instead of the
// default object.
})(module, module.exports);
return module.exports;
}
```
### `module.filename`
* {string}
The fully resolved filename of the module.
### `module.id`
* {string}
The identifier for the module. Typically this is the fully resolved
filename.
### `module.isPreloading`
* Type: {boolean} `true` if the module is running during the Node.js preload
phase.
### `module.loaded`
* {boolean}
Whether or not the module is done loading, or is in the process of
loading.
### `module.parent`
> Stability: 0 - Deprecated: Please use [`require.main`][] and
> [`module.children`][] instead.
* {module | null | undefined}
The module that first required this one, or `null` if the current module is the
entry point of the current process, or `undefined` if the module was loaded by
something that is not a CommonJS module (E.G.: REPL or `import`).
### `module.path`
* {string}
The directory name of the module. This is usually the same as the
[`path.dirname()`][] of the [`module.id`][].
### `module.paths`
* {string\[]}
The search paths for the module.
### `module.require(id)`
* `id` {string}
* Returns: {any} exported module content
The `module.require()` method provides a way to load a module as if
`require()` was called from the original module.
In order to do this, it is necessary to get a reference to the `module` object.
Since `require()` returns the `module.exports`, and the `module` is typically
_only_ available within a specific module's code, it must be explicitly exported
in order to be used.
## The `Module` object
This section was moved to
[Modules: `module` core module](module.md#the-module-object).
* `module.builtinModules`
* `module.createRequire(filename)`
* `module.syncBuiltinESMExports()`
## Source map v3 support
This section was moved to
[Modules: `module` core module](module.md#source-map-v3-support).
* `module.findSourceMap(path)`
* Class: `module.SourceMap`
* `new SourceMap(payload)`
* `sourceMap.payload`
* `sourceMap.findEntry(lineNumber, columnNumber)`
[Determining module system]: packages.md#determining-module-system
[ECMAScript Modules]: esm.md
[GLOBAL_FOLDERS]: #loading-from-the-global-folders
[`"main"`]: packages.md#main
[`"type"`]: packages.md#type
[`ERR_REQUIRE_ESM`]: errors.md#err_require_esm
[`ERR_UNSUPPORTED_DIR_IMPORT`]: errors.md#err_unsupported_dir_import
[`MODULE_NOT_FOUND`]: errors.md#module_not_found
[`__dirname`]: #__dirname
[`__filename`]: #__filename
[`import()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import
[`module.builtinModules`]: module.md#modulebuiltinmodules
[`module.children`]: #modulechildren
[`module.id`]: #moduleid
[`module` core module]: module.md
[`module` object]: #the-module-object
[`package.json`]: packages.md#nodejs-packagejson-field-definitions
[`path.dirname()`]: path.md#pathdirnamepath
[`require.main`]: #requiremain
[exports shortcut]: #exports-shortcut
[module resolution]: #all-together
[native addons]: addons.md
[subpath exports]: packages.md#subpath-exports
[subpath imports]: packages.md#subpath-imports